This product contains the latest Total Factor Productivity (TFP) estimates for Australian broadacre and dairy farms. These estimates are produced using ABARES farm survey data from 1977–78 to 2022–23. The data is presented by industry, state and region.
Productivity is an important measure of Australian farm performance. It shows how efficiently inputs (labour, capital, land, materials and services) are used to produce outputs (crops, wool, and livestock) over time. Growth in the ratio of outputs produced to inputs used translates to improved profitability and competitiveness for farmers.
In the long term, estimates of productivity reflect changes in farm business scale and management practices, and technological progress. However, short-term estimates of productivity are often highly volatile, and influenced by seasonal conditions and other temporary factors. Readers should be cautious when interpreting conventional agricultural productivity estimates over short time periods.
To account for short-term volatility in conventional productivity estimates caused by variation in climatic conditions, ABARES has produced climate adjusted productivity estimates from 1988–89 to 2021–22. These estimates have been produced using the ABARES farmpredict model. Climate adjusted productivity estimates mainly measure underlying technological change and are a better reflection of ‘true’ industry productivity performance over time.
Key findings
- National productivity growth in the broadacre industries averaged 1.0% per year from 1977–78 to 2022–23.
- Dairy industry productivity growth averaged 1.2% per year from 1978–79 to 2022–23.
- Productivity trends for broadacre indicate little change in 2022-23 from the previous year.
June 2024 Data Update
The ABARES Productivity Data Dashboard now includes headline estimates for 2022–23. Several refinements have been applied to the data and methodology including minor price revisions and an improvement to the dairy rebasing approach from 1 year to 5 years. All estimates are now constructed using a 5-year rebased Fisher index.
This PowerBI data dashboard may not meet accessibility requirements. For more information about the contents of this product contact ABARES.
Key trends
Trends and drivers of Australian Farm productivity
Key drivers of farm productivity growth are:
- Public and private investment in research, development and extension (RD&E)
- Farm innovations
- Policy reforms and deregulation
- Changes in industry structure
- Climate conditions
- Investment in human and physical capital
ABARES has undertaken previous research into the trends and drivers of agricultural productivity. For a more detailed analysis, visit Productivity drivers.
Broadacre industry productivity
Since 1977–78 broadacre productivity growth has been driven by declining input use and modest output growth – though there has been considerable differences across the broadacre industries. The composition of the broadacre industry has changed significantly over time - some outputs have expanded while others have contracted, the number of farms has declined while farm size has increased, and the location of particular industries has shifted. All these changes have contributed to the overall trend in broadacre productivity growth.
Broadacre productivity growth slowed between 1998–99 and 2004–05, partly as a result of drought during the 2000s. Productivity returned to positive growth between 2005–06 and 2011–12 before slowing down again in recent years. The slowdown appears to have been primarily driven by deteriorating climate conditions and drought events in eastern Australia.
Cropping industry productivity
Since 1977–78 cropping industry productivity growth has been driven by significant output growth, with input use growing but at a slower rate.
Strong productivity growth in the cropping industry in the 1980s and 1990s have been attributed to developments in technology (Jackson. 2010 and Knopke et al. 2000). The slowdown in cropping sector productivity growth after the mid-1990s has been attributed to climate factors and a slowdown in the growth of agricultural R&D investment (Sheng et al. 2011).
Beef industry productivity
From 1977–78 beef productivity growth has been driven by output growth, while input use was relatively constant.
Productivity improvements in this industry have been realised through improved pastures, animal genetics and disease management, which lowered mortalities and increased branding rates (calves marked as a percentage of cows mated) (Jackson, Dahl & Valle 2015).
Sheep industry productivity
The Australian sheep industry has undergone significant adjustment since the early 1990s, when price support mechanisms for wool were removed. Many farmers shifted their enterprise mix from wool towards cropping, resulting in decreases in both output and input use in the sheep industry, and contributing to higher broadacre farm productivity overall. Sheep numbers have also been reduced as a result of destocking during periods of drought.
Dairy industry productivity
Since 1978–79 dairy productivity growth has varied significantly. Overall productivity growth has been driven by output growth with a mild decline in input use.
The dairy industry has undergone significant adjustment since deregulation in 2000. In the period following deregulation, output and input use both declined, but productivity growth increased. Productivity improvements in this industry have been driven by ongoing structural change as well as uptake of new technologies such as rotary dairies, artificial insemination and improved pastures (Harris 2011).
ABARES publishes estimates of climate adjusted total factor productivity (TFP) alongside conventional or ‘unadjusted’ TFP statistics. Climate-adjusted productivity estimates are derived from ABARES farm survey data combined with the farmpredict model – a machine learning based microsimulation model of Australian broadacre farms.
Farmpredict generates synthetic counterfactual farm level data for broadacre farm inputs and outputs, under a range of climatic conditions. For example, the model can estimate the inputs and outputs of agricultural production for a farm in particular year, had it experienced the climatic conditions that existed in a different year. See here for more information about the farmpredict model.
Synthetic farm level results are calculated across a range of years to generate an estimate of a particular farm’s performance under ‘average’ climate conditions. TFP estimates are then generated from the synthetic data using the standard methodology for generating farm level agricultural productivity estimates, outlined in Zhao et al. (2012).
Whilst year-to-year climate conditions vary significantly, Australia post-2000 has experienced a deteriorating climatic trend, specifically through hotter and drier average seasonal conditions. Climate adjusted productivity estimates are an important measurement tool because they largely remove the impacts of both annual variations and the trend in climate conditions, thereby revealing the underling pattern of productivity growth in Australian agriculture.
The growth in climate adjusted agricultural productivity for Australia’s broadacre agriculture industry has been gradual and positive over the three decades since 1988–89. This growth reflects improvements in productivity over time that farmers have achieved through investing in new technologies and adopting new practices in production.
Climate adjusted TFP estimates are available from 1988–89 onwards for the broadacre industry. The estimates are also available for the broadacre sub-industries (cropping, beef, sheep, sheep-beef, and mixed livestock-cropping), and are available at national and state level geographies. ABARES provides updates to the series on an annual basis.
The climate adjusted productivity estimates are designed to serve as a key measure of farm performance. As the estimates largely remove climate-induced volatility, they should be used as the preferred measure of assessing technological progress in Australian agriculture, particularly over shorter time periods.
Industries
The TFP numbers are calculated for each of the following:
- All Broadacre industries
- Cropping industry
- Mixed crop-livestock industry
- Sheep industry
- Beef industry
- Dairy industry
States & Regions
The TFP numbers are calculated by industry at the national level, as well as by industry & by state, or by industry & by region.
Australia agricultural industry regions are depicted below:
Beef industry regions, based on Meat and Livestock Australia regions
For more detailed definition of Agricultural industry regions, visit Farm surveys definitions and methods.
Download
Supporting data - Australian Agricultural Productivity, 2022–23 data dashboard (XLSX 53.6KB)
If you have difficulty accessing this file, visit web accessibility for assistance.
Further reading
Nossal, K (2011), From R&D to productivity growth: Investigating the role of innovation adoption in Australian agriculture. Rural Industries Research and Development Corporation.
Nossal, K. and Gooday, P (2009), Raising productivity growth in Australian agriculture. Australian Bureau of Agricultural and Resource Economics (ABARE).
Harris, D (2011), Victoria's dairy industry: an economic history of recent developments, report prepared for the Department of Primary Industries, Victoria and Dairy Australia Ltd, Melbourne, October.
Hughes, N, Lawson, K, and Valle, H (2017), Farm performance and climate: Climate-adjusted productivity for broadacre cropping farms, ABARES research report 17.4, Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra.
Jackson, T (2010), Harvesting productivity: a report on the ABARE–GRDC workshops on grains productivity growth, ABARE research report 10.5 prepared for the Grains Research and Development Corporation, Australian Bureau of Agriculture and Resource Economics, Canberra, April.
Jackson, T, Dahl, A & Valle, H (2015), 'Productivity in Australian broadacre and dairy industries' in Agricultural commodities: March quarter 2015, Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra.
Knopke, P, O'Donnell, V & Shepherd, A (2000), Productivity growth in the Australian grains industry, ABARE research report 2000.1 for Grains Research and Development Corporation, Australian Bureau of Agricultural and Resource Economics, Canberra.
OECD (2001), Measuring Productivity - OECD Manual: Measurement of Aggregate and Industry-level Productivity Growth, OECD Publishing, Paris.
Sheng, Y, Gray, E & Mullen, J (2011), Public investment in R&D and extension and productivity in Australian broadacre agriculture, ABARES conference paper 11.08 presented to the Australian Agricultural and Resource Economics Society, 9–11 February 2011, Melbourne.
Sheng, Y, Mullen, J.D and Zhao, S (2016), Has growth in productivity in Australian broadacre agriculture slowed? A Historical View. Ann Agric Crop Sci. 2016; 1(3): 1011.
Zhao, S, Sheng, E, and Gray, E (2012) ‘Productivity of the Australian Broadacre and Dairy Industries: Concept, Methodology and Data’, Chapter 4 in Fuglie K., S. L. Wang and E. Ball (eds.) Productivity Growth in Agriculture: An International Perspective, GAB International, Wallingford (UK) and Cambridge, MA (USA) 2012.
Zammit, K and Howden, M (2020), Farmers’ terms of trade: Update to farm costs and prices paid, ABARES research report 20.3, Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra.