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Population growth rates: Determining factors 
and role in population regulation 

The numerical response function: rate of increase and food 
limitation in herbivores and predators 

Peter Bayliss 

Abstract 
Animal populations vary in abundance over time. Some populations have declined towards 
extinction and others have increased dramatically. The patterns of, and reasons for, such 
variation have been topics of active research for decades. Recent developments in the field, 
such as more detailed case studies and refined mathematical analysis, allow greater 
exploration of why populations vary in abundance. The Royal Society held a discussion 
meeting in London between 6–7 February 2002 on ‘Population Growth Rates: Determining 
Factors and Role in Population Regulation’ which examined the recent developments for 
animal populations around the world and provided directions for future research and wildlife 
management. I presented a seminar on one theme: ‘The numerical response function: rate of 
increase and food limitation in herbivores and predators’ with colleague Dr David Choquenot. 
All papers at this conference were published in the Philosophical Transactions of the Royal 
Society (London B)(2002) issue 357. Subsequently all papers were published by the Royal 
Society separately in a book. Details of the conference, the paper, book and seminar are 
outlined in this Internal Report. 
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48 The numerical response: rate of increase and food
49 limitation in herbivores and predators
50

51 Peter Bayliss1* and David Choquenot2

52
1Environment Australia, Environmental Research Institute of the Supervising Scientist (eriss) and National Centre

53 for Tropical Wetlands Research, GPO Box 461, Darwin, NT 0801, Australia
54

2Arthur Rylah Institute for Environmental Research, Natural Resources and Environment, PO Box 137 Heidelberg,
55 VIC 3084, Australia

56 Two types of numerical response functions have evolved since Solomon first introduced the term to
57 generalize features of Lotka–Volterra predator–prey models: (i) the demographic numerical response,
58 which links change in consumer demographic rates to food availability; and (ii) the isocline numerical
59 response, which links consumer abundance per se to food availability. These numerical responses are
60 interchangeable because both recognize negative feedback loops between consumer and food abundance
61 resulting in population regulation. We review how demographic and isocline numerical responses have
62 been used to enhance our understanding of population regulation of kangaroos and possums, and argue
63 that their utility may be increased by explicitly accounting for non-equilibrium dynamics (due to environ-
64 mental variability and/or biological interactions) and the existence of multiple limiting factors. Interferen-
65 tial numerical response functions may help bridge three major historical dichotomies in population ecology
66 (equilibrium versus non-equilibrium dynamics, extrinsic versus intrinsic regulation and demographic ver-
67 sus isocline numerical responses).

68 Keywords: numerical response; population growth rate; regulation; herbivores; predators;
69 non-equilibrium

7071

72 1. INTRODUCTION

73 (a) Herbivores and predators: types of consumer–
74 resource systems
75 The resources used by animal populations are either non-
76 consumable or consumable (Caughley & Sinclair 1994).
77 While the absolute level of non-consumable resources is
78 generally not influenced through its use (e.g. shelter), the
79 level of consumable resources is (e.g. food). The most
80 comprehensive classification of the relationship between
81 resources and animals is that developed for grazing sys-
82 tems by Caughley & Lawton (1981). They accounted for
83 the degree to which herbivores interact with their food
84 resources and interfere with each others capacity to access
85 those resources. Interactive grazing systems are those in
86 which herbivore consumption influences the rate of
87 renewal of food plants, which in turn influences the
88 dynamics of the herbivore population itself. Interactive
89 grazing systems are further differentiated into interferen-
90 tial systems in which herbivores can affect each others
91 capacity to assimilate food plants, and laissez-faire systems
92 in which they do not. Non-interactive grazing systems are
93 those in which herbivore feeding has no influence on the
94 rate of renewal of food plants and, hence, no reciprocal
95 influence on the dynamics of the herbivore population.
96 Non-interactive grazing systems are differentiated between
1

27 * Author for correspondence (peterb@eriss.erin.gov.au).
28

29 One contribution of 15 to a Discussion Meeting Issue ‘Population growth
30 rate determining factors and role in population regulation’.
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97reactive systems in which rate of change in herbivore
98abundance is a function of food plants, and non-reactive
99systems in which herbivore population dynamics are larg-
100ely independent of food availability. We argue that this
101classification encompasses the range of mechanisms that
102link most animal consumer systems to their food resources
103and so is applicable to both herbivores and predators. Any
104food resource available to an animal population has the
105potential to elevate average reproduction and/or survival.
106The availability of food resources to an animal population
107will be potentially reduced through the use of those
108resources by the animal population itself (i.e. the negative
109feedback loop).

110(b) Food availability and consumer abundance
111(a short history)
112Solomon (1949) recognized that an increase in food
113availability would generally elicit two responses in a con-
114sumer population limited by those food resources; a ‘func-
115tional response’ which elevates the per capita rate of food
116intake, and a consequent ‘numerical response’ which
117increases consumer abundance through enhanced repro-
118duction, survival or both. By directly linking food avail-
119ability and consumer population demography and
120abundance through the numerical response, Solomon
121(1949) was generalizing features of more specific models
122of trophic interaction (primarily Lotka–Volterra predator–
123prey models) to his central theme of animal population
124regulation. These models assume that both prey (food)
125mortality due to predation and predator (consumer) sur-
126vival are proportional to the product of food (H) and con-
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1396 Figure 1. A diagram describing a Lotka–Volterra model of
1397 interaction between a predator (consumer) and its prey
1398 (food). Symbols are those used in equations (2.3) and (2.4):
1399 food availability (V ); food intake (CH); consumer
1400 demographic rates (annual rate of increase
1401 rH = births � deaths or b � d ); and consumer abundance
1402 (H).

127 sumer (P) abundance (i.e. bHP and cHP respectively). In
128 effect, this implies that both the functional response of
129 consumers to variation in food availability and the conse-
130 quent change in consumer demographic rates are linear,
131 indicating that the transfer of biomass from the food to
132 consumer populations is conserved. Perhaps more
133 importantly, the structure of the model drives changes in
134 consumer abundance according to the direct effect that
135 food intake rate has on consumer demography (figure 1).
136 Since Solomon’s original definition, two types of
137 numerical response have been defined and used to help
138 elaborate the broad interactive dynamics between con-
139 sumer populations and their food. These are: (i) a ‘demo-
140 graphic’ numerical response that links rate of change in
141 consumer abundance to food availability (Caughley 1976;
142 May 1981a); and (ii) an ‘isocline’ numerical response that
143 links consumer abundance per se to food availability (see
144 Holling (1965, 1966) for total predator responses).
145 In this paper, we review how both approaches to the
146 numerical response have been used to enhance under-
147 standing of herbivore and predator population regulation,
148 and attempt to increase their realism and utility by
149 explicitly accounting for the existence of non-equilibrium
150 dynamics due to environmental variability, biological
151 interactions and situations where multiple factors simul-
152 taneously limit rates of change in population abundance.
153 The different approaches to describing numerical
154 responses have also been recently reviewed by Sibly &
155 Hone (2002).

156 2. DEMOGRAPHIC NUMERICAL RESPONSES

157 (a) Single-species logistic models of population
158 growth
159 The dominant paradigm in large herbivore ecology pro-
160 posed that density-dependent mortality regulates popu-
161 lation density through food shortage (i.e. the so-called
162 ‘food hypothesis’ (Sinclair et al. 1985)). Most tests of the
163 relevance of this hypothesis to large herbivores have either
164 reduced herbivore population density (or allowed a natu-
165 ral catastrophe to do so), and assessed whether the popu-
166 lation returns to its pre-reduction level (Houston 1982;
167 Sinclair et al. 1985), or looked for density dependence in
168 r or some valid demographic correlate of r (i.e. growth,
169 body condition, fecundity or survival) (O’Roke & Ham-
1
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170merston 1948; Woodgerd 1963; Boyd & Jewell 1974;
171Sinclair 1977; Sauer & Boyce 1983; Skogland 1983, 1985;
172Messier & Crête 1984; Clutton-Brock et al. 1985; Eber-
173hardt 1987; Fryxell 1987; Choquenot 1991; Messier
1741991). Both of these approaches focus on the dynamics
175of the herbivore population, interpreting any decline in r
176or its index as the population moves towards its hypotheti-
177cal equilibrium as the effect of declining per capita food
178availability. Because these tests do not consider food
179explicitly, they are either implicitly or directly under-
180pinned by single-species models of interaction between
181herbivores and their food resources (Caughley 1976). The
182simplest model that is generally applied to herbivore popu-
183lations is the generalized logistic which has the form:

184r = rm�1 �
N
K�Z, (2.1)

185

186where rm is the maximum rate of increase, K is the density
187of the herbivore population where the rate of renewal in
188food resources is just sufficient to balance reproduction
189and survival (where r = 0), N is prevailing population size
190and z is a coefficient describing the degree to which the
191density-dependent decline in r with N is delayed until
192higher levels of N are attained (Fowler 1981, 1987; figure
1932a). The value of z reflects the degree to which the
194amount of food currently available to herbivores is
195determined by the number of herbivores currently con-
196suming that food (z = 1), or the number that have fed on
197the food in the past (z � 1). Eberhardt (1987) used a fairly
198high value of z = 11 in fitting equation (2.2)��2�� to
199population census data for elk (Cervus elaphus) in Yel-
200lowstone National Park in the western United States,
201implying that current food availability was heavily depen-
202dent on past elk density. Delayed effects of density on r
203mean that most density dependence is observed at den-
204sities near K (figure 2b).
205The most pressing limitation of single-species models
206for large herbivores (and hence on tests of the food
207hypothesis based on single-species models), is that Kmust
208be assumed to be relatively constant if the relationship
209between population density and r is to be consistent (and
210hence detectable) (Caughley 1976; Choquenot 1998).
211The importance of this assumption can be illustrated by
212contrasting the growth trajectories for elk projected from
213Eberhardt’s (1987) model, where K is alternatively stable
214(1% year-to-year variation in K; figure 3a) or unstable
215(5% year-to-year variation in K; figure 3b). While growth
216towards equilibrium follows a clearly density-dependent
217trajectory where K is relatively stable, density-dependent
218population growth is not evident where K is less stable.

219(b) Interactive consumer–resource models
220The more explicit demographic numerical response
221links change in consumer demographic rates to food avail-
222ability. In contrast to the single-species density-dependent
223approach above, consumer–resource models are by nature
224multi-species models, but only in the sense that separate
225predator and prey components are explicitly modelled and
226linked. Additionally, whilst only one predator species is
227usually modelled, prey may involve all food species
228lumped on one axis or a subset of most important food
229species. As a step in formulating an interactive plant–her-
230bivore system, Caughley (1976) described a demographic
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1408 Figure 2. Hypothetical relationships between (a) rate of
1409 population increase (r) and population size predicted from
1410 the generalized logistic model in which z is varied from 1 to
1411 3 (see lines on graph), and (b) the generalized logistic model
1412 for Yellowstone elk estimated from population census data
1413 (Eberhardt 1987). The parameter values estimated for elk
1414 are rm = 0.2 p.a., carrying capacity K = 12 000 and z = 11.

231 numerical response (after May 1981a) that linked vari-
232 ation in herbivore demographic rates (summarized by the
233 instantaneous rate of population increase, rH), to the
234 biomass of available food (V ):

235 rH = �a� c1(1 � e�Vd1), (2.2)236

237 where a is the maximum rate at which the population
238 declines in the absence of food, c1 is a constant describing
239 the difference between the maximum rate at which the
240 population can increase (rmH) and a (i.e. rm = c1 � a), and
241 d1 is the demographic efficiency of the population indexing
242 how quickly r changes from being negative to positive as
243 vegetation biomass increases. The general form of the
244 response and a diagram of the full interactive model are
245 shown in figure 4a,b.
246 The other components of Caughley’s interactive model
247 were the growth of ungrazed vegetation and the herbivore
248 functional response. Vegetation growth in the absence of
249 grazing was modelled using a simple density-dependent
250 logistic function to link the instantaneous rate of change
251 in vegetation biomass (rV ) to standing biomass (V):
1
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1420Figure 3. Trajectories of growth for elk populations
1421predicted from a generalized logistic model estimated by
1422Eberhardt (1987), with stochastic variation in K equivalent
1423to (a) 1% of the mean, and (b) 5% of the mean value of K.

252rV = rmV�1 �
V
K�, (2.3)

253

254where rmV is the maximum rate of increase in vegetation
255biomass and K is vegetation biomass where shading or
256competition for water or nutrients limits further plant
257growth. The herbivore functional response, which
258describes the increase in per capita vegetation offtake by
259herbivores (CH) with increasing vegetation biomass, was
260modelled using the same exponential form as the numeri-
261cal response:

262CH = c2(1 � e�(V�Vg)d2), (2.4) 263

264where c2 is the maximum rate of vegetation intake by each
265herbivore, Vg is the vegetation biomass where intake by
266herbivores falls to 0 (i.e. the value of Vg determines
267whether or not the curve goes through the origin (May
2681981a, table 5)), and d2 is the efficiency of the functional
269response describing how rapidly vegetation intake
270increases to its maximum rate with increasing vegetation
271biomass.
272The important differences in the model developed by
273Caughley and the Lotka–Volterra model described above
274are: (i) the curvilinear functional and numerical responses
275(equations (2.1) and (2.3)); and (ii) the fact that Caugh-
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1428

1429 Figure 4. (a) The general form of a demographic numerical
1430 response described by Caughley (1976), and (b) the
1431 structure of the interactive model within which the response
1432 was used. The dashed line in (b) indicates a relationship that
1433 is explicit in Lotka–Volterra models but is subsumed by the
1434 demographic numerical response in Caughley’s interactive
1435 model.

276 ley’s numerical response links consumer demography
277 directly to food availability rather than food intake rate.
278 The more complex form of the functional response used
279 in Caughley’s model accommodates more sophisticated
280 ideas on how food availability and other environmental
281 factors influence animal foraging behaviour (e.g. Watt
282 1959; Ivlev 1961; Allden 1962; Holling 1966). In applying
283 the same general form to the demographic numerical
284 response, Caughley’s model simply allows the possibility
285 that transfer of biomass between adjacent trophic levels is
286 conserved in the same way as is assumed in Lotka–Vol-
287 terra models (i.e. maximum reproduction and survival is
288 dependent entirely on the rate of food acquisition). Under
289 these conditions the functional and numerical responses
290 can be parameterized so that maximum rates of increase
291 (rm) are approached at levels of food availability that pro-
292 duce maximum rates of food intake (C). This would
293 reproduce the linear relationship between the rate of food
294 intake and rate of change in predator abundance used in
295 Lotka–Volterra models. Of course, other forms of this
296 relationship are possible. Crawley (1983) argued that the
297 relationship between food intake rate and r would be
298 curvilinear where: (i) maximum reproduction or survival
299 was limited by factors other than food intake; or (ii) a
300 threshold rate of food intake was required before repro-
301 duction was possible. Different forms for the numerical
302 response would need to be considered if these alternatives
303 were to be accommodated.
304 While the demographic numerical response used in the
305 interactive model subsumes the direct link between food
306 intake and animal demography, it provides a very powerful
307 summary of the indirect effect that food availability, as a
1
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308limiting factor, has on an animal population. Demo-
309graphic numerical responses to food availability have been
310estimated for a range of herbivores including kangaroos
311(Bayliss 1987), brush-tailed possums (Bayliss & Cho-
312quenot 1998), wild pigs (Choquenot 1998) and wild
313house mice (Pech et al. 1999). The primary use to which
314these numerical responses have been put is in the develop-
315ment of simulation models that explore dynamic interac-
316tions between herbivore populations and their limiting
317food resources (Caughley 1976, 1987; Caughley & Gunn
3181993; Bayliss & Choquenot 1998; Choquenot 1998).
319Perhaps one the best examples of how demographic
320numerical responses can be applied to help understand
321interactions between animal populations and their food
322resources is the work of Caughley (1987) and his co-work-
323ers. They estimated the components of the interactive
324model described by equations (2.2), (2.3) and (2.4) for
325the grazing system comprising red kangaroos and native
326pastures in Australia’s eastern rangelands. This grazing
327system is highly stochastic, being driven by the vagaries of
328rainfall which varies up to 47% from year to year, with
329low correlation between years and between seasons within
330years. This highly stochastic variation leads to wide, seem-
331ingly random fluctuations in the abundance of kangaroos
332and the pastures they feed on. Between 1977 and 1985,
333Caughley and his co-workers exploited these natural fluc-
334tuations to estimate the form of density-dependent pasture
335responses to rainfall (Robertson 1987a,b), and the
336numerical response of kangaroos to pasture biomass
337(Bayliss 1985a,b, 1987). During that time, the functional
338response describing pasture intake by kangaroos to
339changes in pasture biomass was also estimated in a series
340of graze-down trials using captive kangaroos held in semi-
341natural enclosures (Short 1985, 1987).
342The vegetation response obtained was modified from
343that described in equation (2.3) to account for empirically
344estimated effects of variation in rainfall on pasture growth
345and die-back, over and above the density-dependent
346effects of pasture biomass. The modelled vegetation
347response was:

348�V = �55.12 � 0.01535V� 0.00056V2

349� 3.946R, (2.5) 350

351where �V is the pasture growth increment over three
352months in the absence of grazing, V is pasture biomass at
353the start of those three months and R is the rainfall in mm
354over that period. The pasture growth increment was taken
355as a random draw from a normal distribution with mean
356equal to the solution of equation (2.5) and a standard
357deviation of 52 kg ha�1, equivalent to the variation in pas-
358ture growth not accounted for by rainfall and standing
359biomass (Robertson 1987b). The functional response of
360red kangaroos (Short 1985) was estimated as:

361C = 86(1 � e�V/34), (2.6) 362

363(assuming an average body weight of 35 kg), and their
364demographic numerical response as:

365rH = �1.6 � 2(1 � e�0.007V). (2.7) 366

367The dynamics of the grazing system were simulated over
368100 years, with seasonal rainfall drawn from normal distri-
369butions with means and standard deviations estimated
370from long-term records. Successive pasture growth
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1441 Figure 5. Temporal variation in (a) pasture biomass and
1442 (b) kangaroo density, predicted from a model of interaction
1443 between kangaroos and pasture, developed by Caughley
1444 (1987).

371 increments were estimated from equation (2.5), and
372 changes in the per capita rate of pasture consumption and
373 kangaroo density from equations (2.6) and (2.7). Changes
374 in pasture biomass and kangaroo density were accounted
375 weekly. Figure 5a,b shows changes in pasture biomass and
376 kangaroo density, respectively, from a typical run of the
377 model.
378 Caughley (1987) found that despite high season to sea-
379 son variation in pasture biomass, and year to year variation
380 in kangaroo density, kangaroos persisted indefinitely in the
381 modelled grazing system, neither crashing to extinction
382 nor increasing without limit. Stochastic rainfall variation
383 led to dramatic fluctuations in pasture biomass that were
384 largely independent of kangaroo density. These fluctu-
385 ations constantly buffeted the grazing system away from
386 its potential equilibrium, creating the rapid oscillation in
387 pasture biomass and large swings in kangaroo density evi-
388 dent in figure 5a,b. However, despite this constant buf-
389 feting, the reciprocal influence kangaroos and pasture
390 exerted over each others abundance, imparted a suf-
391 ficiently strong tendency towards equilibrium (i.e.
392 ‘centripetality’), that kangaroos persisted indefinitely. The
393 tendency that the grazing system has towards equilibrium
394 is driven essentially by density-dependent competition
395 amongst kangaroos for available pasture. The fact that
396 kangaroos compete for pasture is evident in the 43%
397 increase in average predicted pasture biomass that occurs
398 when kangaroos are removed from the model. This indi-
399 cates that the grazing system achieves centripetality
400 through the same trophic processes that are represented
401 implicitly by the density dependence of single-species
402 models of other herbivore populations (Sinclair 1989).
403 For example, in the absence of density-independent fluc-
404 tuations in pasture biomass, the pattern of variation in r
1
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1449

1450Figure 6. Relationship between density and rate of increase
1451for kangaroos in the absence of stochastic variation in
1452rainfall and pasture growth, predicted from a model of
1453interaction between kangaroos and pasture developed by
1454Caughley (1987).

405for kangaroos with density conforms to that of a gen-
406eralized logistic model (figure 6). Hence, the interactive
407model is the general case for vegetation–herbivore sys-
408tems, single-species models being a ‘short-hand’ or ‘con-
409tracted’ version that represents the statistical association of
410herbivore density and rate of increase that emerges when
411density-independent perturbation of these systems is low
412or uncommon.

413(c) Consonance with observation
414(i) Non-equilibrium dynamics (including multiple equilibria)
415Environmental variability and kangaroos
416Bayliss (1987) developed numerical response models
417for red and western grey kangaroos in two locations (a
418national park and a sheep station). Caughley (1987) used
419a slightly modified version of these functions to simulate
420overall grazing system dynamics. An Ivlev (1961) function
421was fitted (figure 7a) to the rate of increase versus food
422availability data for red kangaroos using maximum likeli-
423hood estimation. Results here are for red kangaroos on a
424national park. Similar patterns were found for both kanga-
425roo species in all locations. The a priori model assumes
426that food is the major proximate factor that regulates
427kangaroo population dynamics. Two post-drought outliers
428were hence excluded from the original analysis because
429they did not fit the a priori assumption (figure 7a). How-
430ever, a time-trace of the rate of increase data (figure 7b)
431show that the population dynamics of kangaroos entering
432a drought from conditions of high food abundance is quite
433different to that for populations recovering from a drought
434from conditions of low food abundance. For populations
435recovering from drought, rates of increase remain negative
436despite high levels of food (pasture biomass). This ‘hyster-
437esis’ or ‘lens’ pattern (resulting in two equilibria where
438r = 0) may reflect the existence of two alternate system
439states over a drought cycle, where the transition between
440each is across a threshold or break point.
441A density-dependent (isocline) numerical response
442model demonstrates the non-equilibrium system proper-
443ties more clearly (figure 7c). Results are for western grey
444kangaroos on Kinchega National Park, however similar
445patterns were found for both species in all locations. A
446time-trace of rate of increase with a six month time-lag
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1459

1460 Figure 7. (a) Demographic numerical response (r p.a.) for
1461 red kangaroos and their food availability (pasture biomass V,
1462 kg.ha�1��12��). The fitted function is r = �0.8 � 1.14
1463 (1 � e�0.007V) which excludes two post-drought data (square
1464 symbols, Bayliss (1987)); (b) time-trace of the same rate of
1465 increase data including previously discarded outliers (solid
1466 line, high density populations entering a drought; dotted
1467 line, low density populations leaving a drought��11��); and
1468 (c) time-trace of western grey kangaroo rate of increase
1469 versus lagged density (km�2, six month time-lag), showing
1470 the break point transition between two domains of attraction
1471 (drought and non-drought conditions).

447 shows clearly the break point or hysteresis between two
448 postulated ‘domains of attraction’, reflecting drought and
449 non-drought conditions. Although lagged density may
450 confound both extrinsic (pasture food) and intrinsic
451 (spacing behaviour) regulation processes, P. Bayliss and
452 D. Choquenot (unpublished data) argue that the two par-
453 allel and negative linear correlations may simply reflect the
454 high and low phases of a stable limit cycle (i.e. an open-
455 ended ellipse). Once again, this graphical analysis points
456 to the existence of two equilibria (where r = 0), one at high
1
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1476

1477Figure 8. Phase plane trajectory plotting isoclines of pasture
1478food (V, kg.ha�1��12��) and kangaroo density (D,
1479nos.ha�1��3��) using a demographic numerical response
1480model. Note the apparent existence of two domains of
1481attraction at high (H) and low (L) densities. Each domain is
1482locally stable (centripetal) but globally unstable because of
1483unpredictable changes in rainfall-driven pasture biomass.

457density and high pasture biomass, the other at low density
458and low pasture biomass. Both equilibria may be locally
459stable but globally unstable because pasture biomass is
460driven largely by stochastic rainfall events (Robertson
4611987a,b).
462Hence, globally, the kangaroo grazing system is a non-
463equilibrium system but with two postulated local ‘domains
464of attraction’ towards stability. The trajectories and pos-
465itions within this binary system depend critically on initial
466conditions of pasture biomass (food) and kangaroo den-
467sity. Populations at high density entering a drought exhibit
468different population dynamics to low density populations
469emerging from a drought (e.g. different sex and age struc-
470tures, response time-lags and reproductive condition (see
471Bayliss 1980; Cairns & Grigg 1993)). The phase plane
472trajectory (figure 8), or time-trace of zero isoclines of
473kangaroo density (H, nos.ha�1��3��) and food abun-
474dance (V, kg.ha�1��3��), clearly illustrate the dynamics
475between alternate periods of very high and low to medium
476kangaroo densities.
477This result is surprising given that the numerical
478response model is in fact an equilibrium model applied to
479a stochastic environment. A probable cause may be the
480asymmetrical relationship between rate of increase and the
481availability of food which is in itself driven largely by
482stochastic rainfall events; for the same amount of rainfall
483about the annual mean (where r = 0), a much greater rate
484of decrease occurs than a rate of increase. Hence, rainfall
485variance reduces long-term mean density (Caughley
4861987), but may also create a ‘two-state’ system (a run of
487high density periods followed by a run of low density per-
488iods; see figure 5b).
489Although not incorporated into the Caughley (1987)
490‘structural’ interactive grazing model, the composition of
491pastures is also likely to differ between pre- and post
492drought domains, which should add yet another dimen-
493sion of complexity and stability. Pastures of course
494respond in two ways to grazing (see McNaughton (1979)
495for grassland–herbivore dynamics in the Serengeti), either
496through changes in biomass and productivity (modelled
497here), or shifts in pasture composition (not modelled
498here). Surprisingly, even eastern grey kangaroo popu-
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1488

1489 Figure 9. Annual trends in an index of abundance (numbers
1490 observed km�1 ± s.e.) of eastern grey kangaroos on
1491 Tidbinbilla Nature Reserve (ACT, Australia), showing
1492 apparent 4–5 year stable limit ‘cycles’ between 1975–1991
1493 (n = 17 years). Kangaroos were counted at night by spotlight
1494 along fixed transects across the reserve.

499 lations living in more stable seasonal, temperate environ-
500 ments of eastern Australia exhibit non-equilibrium
501 behaviour. Figure 9 shows an apparent 4–5 year stable
502 limit cycle for eastern grey kangaroos on Tidbinbilla Nat-
503 ure Reserve, ACT, Australia (P. Bayliss, unpublished
504 data). Although we do not know what causes these appar-
505 ent cycles (fox predation, competition with rabbits and/or
506 other macropods, disease, el nino, seasonality effects or a
507 combination of causes), or if in fact they are cycles
508 (coincidence), the system is definitely not an equilibrium
509 system as we would predict from the Caughley (1976,
510 1987) interactive kangaroo grazing model applied to more
511 stable environments. Hence, kangaroos appear to be very
512 good examples of non-equilibrium systems because their
513 numbers over time are characteristically unstable; the
514 abundance of all censused populations of kangaroos var-
515 ies widely.

516 Biological interactions and possums in New Zealand
517 Caughley & Krebs (1983) identified two categories of
518 regulation in order to explain the apparent dichotomy
519 studies of small and large mammal population dynamics.
520 One is intrinsic (self) regulation, where rate of increase
521 (r) is suppressed by some form of spacing behaviour (or
522 physiological process) as density increases. This type of
523 regulation is generally expressed in terms of the negative
524 prediction between r and instantaneous density (e.g. sin-
525 gle-species logistic models). The other is extrinsic regu-
526 lation, where r is governed by the relationship between the
527 consumer and an external factor (food availability, pre-
528 dation, disease, weather or a combination of factors).
529 However, Erb et al. (2001) found that patterns of popu-
530 lation dynamics in small versus large mammals contradict
531 those predicted by the Caughley & Krebs (1983) hypoth-
532 esis. Nevertheless, their distinction between intrinsic and
533 extrinsic regulatory mechanisms remains an important
534 distinction and is retained here. The term ‘density depen-
535 dent’ generally refers to a prediction between r and den-
536 sity, and density independent a lack thereof. However,
537 density per head of population may index a limiting
538 resource (extrinsic regulation) and/or spacing behaviour
539 (intrinsic regulation). Because the population regulatory
540 mechanisms are not explicitly defined, single-species ‘den-
1
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541sity-dependent’ models often subsume or hide biological
542process rather than expose them.
543Although extrinsic and intrinsic regulation are not
544mutually exclusive they are generally modelled as such.
545However, some populations may be regulated by both
546mechanisms (e.g. grazing interference or facilitation may
547attenuate the numerical response to food availability (see
548Vessey-Fitzgerald 1968)). A theoretical framework for
549such combined regulatory influences on a species popu-
550lation dynamics already exists (e.g. Caughley & Lawton
5511981; Caughley & Krebs 1983), and is encapsulated in
552a class of numerical response models called interferential
553models (Caughley & Lawton 1981; Caughley & Krebs
5541983; Barlow 1985). Caughley & Lawton (1981) exam-
555ined a common form of the interferential numerical
556response, such that:

557rH = rm�1 �
JH
V �, (2.8)

558

559where rH and V are as defined previously, and J is a pro-
560portionality constant related to the availability of food
561needed to sustain consumer H at equilibrium. However,
562Barlow (1985) argued that, despite its widespread use, this
563particular type of interferential numerical response model
564is biologically meaningless. Nevertheless, the addition of
565an intrinsic density dependent factor which is unrelated
566to the extrinsic availability of food is easily expressed by
567including a density term in laisez-faire numerical response
568models exemplified by equation (2.2). A good example is
569that provided by Tanner (1975) and explored by Caugh-
570ley & Krebs (1983), such that:

571rH = a � c1(1 � e�Vd1) � gD, (2.9) 572

573where rH, a, c1, V and d1 are as previously defined, with
574D being instantaneous density and g a coefficient
575depending on the magnitude of the effect. Ginzburg
576(1998) suggests that it is preferable to keep separate any
577terms in the numerical response function which reflect
578unrelated biological phenomena, and this is the approach
579adopted by Caughley & Krebs (1983), Bayliss & Cho-
580quenot (1998) and Pech et al. (1999). This is a more
581realistic and explicit model of interference or aggregation
582effects than the model proposed by Caughley & Lawton
583(1981), as it separates the food intake and self-regulation
584terms in the consumer numerical response whilst leaving
585the nature of the self-regulation unspecified, as highlighted
586by Barlow (1985).
587Bayliss & Choquenot (1998) suggested that interferen-
588tial numerical response models of equation (2.9) may pro-
589vide a more useful framework for understanding
590population dynamics because the combination of extrinsic
591(consumer–resource) and intrinsic (animal–density) regu-
592lation processes may embody the much broader spectrum
593of population regulation mechanisms that most probably
594exist in species. They examined this proposition for the
595introduced possum in New Zealand forests, which is sum-
596marized below.
597Population models developed for possums per se have
598curiously been entirely single-species logistic models (e.g.
599Barlow & Clout 1983) and, hence, ignore plant–herbivore
600interactions despite the marked impact that possums have
601on native forests (although Barlow (1991) and Barlow et
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602 al. (1997) developed comprehensive multi-species pos-
603 sum-disease models as extensions of the earlier single-
604 species logistic model). Hinau (Elaeocarpus dentatus) is an
605 endemic New Zealand hardwood tree that lives up to 400
606 years and is known to mast; fruit production alternates
607 between periods of low and super abundance in cycles of
608 two plus years. Possums are primarily folivorous, but also
609 feed extensively on fruits, flowers and buds of many native
610 trees such as hinau. Hinau fruit is a critical winter food
611 source and may even index all winter food sources (Bell
612 1981). Bell found that the birth date of possums, the per-
613 centage of females with pouch young and body weight all
614 were positively correlated to the annual crop of hinau fruit.
615 Cowan & Waddington (1990) found that hinau fruit pro-
616 duction increased dramatically when possums were eradi-
617 cated, and that fruit production was suppressed again with
618 subsequent recolonization. The ecological relationships
619 between possums and food availability were examined in
620 greater detail in two stages, using hinau fruit to index food
621 availability. First, the physiological relationships between
622 possums and hinau abundance were examined and used
623 to underpin the population-level analyses. Second, an
624 interferential numerical response model was then
625 developed using the availability of hinau fruit as an index
626 of food supply overall and ‘instantaneous density’ to index
627 possible spacing behaviour effects (e.g. feeding inter-
628 ference and/or competition for nest sites) which may be
629 independent of the effects of food. We argue that behav-
630 ioural density-dependent effects are likely to be instan-
631 taneous (i.e. no time-lag) and, by contrast, additional
632 extrinsic effects unrelated to food (e.g. predation or
633 disease) are more likely to be indexed by lagged density
634 effects. Nevertheless, the exact cause of any instantaneous
635 density-dependent effect is unknown and, therefore,
636 additional extrinsic effects (in interaction or in
637 combination) cannot be ruled out.
638 Possum reproductive and body condition (weights and
639 fat storage) were collected during a long-term trap–kill
640 study of possums in the Pararaki Valley (n = 32 years;
641 1965–1997), New Zealand (M. Thomas and J. Coleman,
642 unpublished data.). Female body fat increased with
643 increasing availability of hinau fruit at Orongorongo Valley
644 (20 km distance from Pararaki Valley; figure 10a). The
645 trend is mostly linear although overall significantly nonlin-
646 ear (quadratic, concave down) due to one point. The pro-
647 portion of female possums with pouch young increased
648 with increasing body fat condition up to a maximum level
649 (figure 10b). An Ivlev curve was fitted by maximum likeli-
650 hood estimation, explaining a high proportion of variance
651 (r2 = 89%). The proportion of females with pouch young
652 increased with increasing food availability up to a
653 maximum level (figure 10c). A logistic curve was fitted by
654 maximum likelihood estimation explaining a high pro-
655 portion of variance (r2 = 99.5%). There was a negative lin-
656 ear correlation between birth date (arbitrary estimated as
657 days since the 1st January on a logarithmic scale) and
658 hinau food availability (figure 10d). More possums were
659 born early when food levels were high compared with
660 more possums being born late when food levels were low.
661 However, only a low proportion of variance was explained
662 (r2 = 15%) by this relationship.
663 Long-term (n = 31 years; 1966–1997 (Efford 1998,
664 2000)) population level data were collected at Orongo-
1
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665rongo Valley by mark–recapture and contemporaneously
666with estimates of the annual crop of hinau fruit (via seed-
667fall traps (Cowan & Waddington 1991; P. E. Cowan et al.
668unpublished data��4��). A classic Ivlev curve was fitted a
669priori by maximum likelihood estimation to the numerical
670response between rate of increase and food (figure 11a),
671explaining 40% of observed values (rposs = �0.60
672� 0.85(1.0 – e�0.037V). The estimate of rm is 0.25 p.a.
673which compares favourably with the range of estimates
674(0.22–0.25 p.a.) derived by Hickling & Pekelharing
675(1989). There was a significant and negative linear corre-
676lation between rate of increase and instantaneous density
677(figure 11b), explaining 35% of observed values
678(rposs = 0.65–0.084D). Backwards extrapolation to the y-
679axis (D = 0) predicts a rm value of 0.65 p.a., significantly
680higher than that estimated by the demographic numerical
681response above. However, the linear extrapolation is well
682outside the range of observed data, and may be an over-
683estimate if the relationship between r and density is non-
684linear as expected (because of the interaction between
685limiting food resources).
686The dynamics of hinau fruit production as impacted on
687by possums, and of possums as influenced by intrinsic and
688extrinsic regulatory mechanisms, are characterized by a
689family of curves or relationships and, hence, multiple equi-
690libria (figure 12a,b). Bayliss & Choquenot (1998)
691developed an interferential numerical response function
692for possums by statistically combining both extrinsic (rposs

693versus hinau, V ) and intrinsic (rposs versus density,
694Dposs ha�1) numerical responses (figure 12b) into a joint
695multiple regression equation (rposs = {[�0.60 � 0.85
696(1 � e�0.037V )] � 0.01Dposs}). Both variables were statisti-
697cally significant entries into the overall regression equ-
698ation, which explained 69% of observed values. These two
699numerical response models are a good example of the con-
700trasting paradigms described by Sibly & Hone (2002).
701The dynamics of hinau fruit production in the presence
702of consumption by possums is best described by a logistic
703model with an independent term for the negative impact
704of possum density (figure 12a). The high intrinsic rate of
705increase of annual hinau fruit production (rhin(m) � 2.0)
706produces stable limit cycles with a periodicity of 2.0 years
707(see years 1–20; figure 12c). Without the impact of pos-
708sums hinau would mast every two years (i.e. low one year
709and high the next), although environmental variability (P.
710E. Cowan et al. unpublished data��4��) may mask detec-
711tion of any regular cycles. Figure 12c shows a simulated
712trend in hinau and possum abundance after a liberation
713of 0.1 possums ha�1. The modelled stable limit cycle of
714hinau fruit is flattened out after 20 years because the
715increasing abundance of possums and associated absolute
716consumption of hinau has an equilibriating effect. The
717abundance of hinau fruit eventually stabilizes at a level of
71844 (cf. an observed mean value of 47). Similarly, possum
719densities are predicted to equilibriate at 8.4 ha�1 in con-
720trast to mean observed densities of 8.2 ha�1 (and mean
721rposs = 0, as predicted by the joint regression model).
722Although this close fit is not an independent test of the
723model, the outcomes at least concord with observed data.
724Without the density effect in the possum numerical
725response function, the model predicts an equilibrium pos-
726sum density of 10.7 ha�1 , 30% above the observed mean,
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1500

1501 Figure 10. Physiological responses of possums in the Pararaki Valley (New Zealand) to winter food supply as indexed by the
1502 availability of hinau fruit in the Orongorongo Valley 20 km away (trap–kill data, 1965–1997) for: (a) female body fat index
1503 versus food (hinau fruit) availability (quadratic polynomial regression: r2 = 48%, d.f. = 2/13, p � 0.01); (b) proportion of
1504 females with PY versus female body fat index (r2 = 89%, n = 17, p � 0.01); (c) proportion of females with PY versus food
1505 (hinau fruit) availability (logistic model: r2 = 99.5%, n = 20, p � 0.001); and (d) timing of births (natural logarithm of arbitrary
1506 number days since 1 January) versus food (hinau fruit) availability (negative linear correlation, r2 = 15%, n = 17, p � 0.05). All
1507 nonlinear functions were fitted using maximum likelihood estimation.

727 whilst hinau fruit abundance decreases to 33% less than
728 the observed mean.

729 3. ISOCLINE NUMERICAL RESPONSES

730 (a) Underlying assumptions
731 An isocline numerical response links changes in the
732 abundance of a consumer population per se directly to the
733 availability of its food resources (figure 13a). Isocline
734 numerical responses are generally formulated as an
735 asymptotic increase in consumer abundance, indicating
736 that the upper limit to consumer abundance is imposed
737 by some factor which is independent of food availability
738 (e.g. available territories, nest sites or some socially
739 mediated crowding effect). Isocline numerical responses
740 subsume both the effect that food availability has on the
1
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741rate of food intake through the functional response, and
742the influence food intake has on demographic rates of the
743consumer population (figure 13b). While the isocline
744approach greatly simplifies the way in which interaction
745between food and consumer abundance can be rep-
746resented, it also assumes that territorial behaviour or inter-
747ference competition regulates populations at high density,
748and the accessibility or availability of limiting resources at
749low density (Choquenot & Parkes 2000��13��).

750(b) Stability properties of the wolf–moose system:
751graphical analyses
752Probably the best known application of isocline numeri-
753cal responses is in the graphical analysis of the stability
754properties of consumer–resource systems (Rosenzweig &
755MacArthur 1963; Noy-Meir 1975; Messier 1994; Caugh-
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1512

1513 Figure 11. The (a) extrinsic numerical response (r p.a.
1514 versus index of food availability V: Ivlev curve fitted a priori
1515 is rposs = �0.60 � 0.85(1.0 � e�0.037V) where r2 = 40%,
1516 n = 50, p � 0.001) and (b) intrinsic numerical response (r
1517 p.a. versus instantaneous density D, nos.ha�1:��3��
1518 rposs = 0.65–0.084D where r 2 = 35%, n = 31, p � 0.001) of
1519 possums in Orongorongo Valley, New Zealand (see
1520 Bayliss & Choquenot (1998) for methods). Data are winter
1521 and summer annual exponential rates of increase (r p.a.),
1522 and the index of food availability (hinau seedfall) has a six
1523 month time-lag. The parameters of the Ivlev curve fitted to
1524 (a) were estimated by maximum likelihood estimation; rm
1525 was estimated at 0.25 p.a.

756 ley & Sinclair 1994). In these analyses, proportional gains
757 and losses to the food population are contrasted over the
758 full range of its potential abundance in order to identify
759 levels of food availability which are relatively stable.
760 Potential increases in the abundance of the food popu-
761 lation are usually represented by a generalized-logistic
762 model similar to that shown in figure 2a. This model
763 assumes that in the absence of the consumer population,
764 the upper limit to food population abundance is imposed
765 by interspecific competition for some limiting resource or
766 through social regulation. Potential losses from the food
767 population are the product of consumer population’s
1
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1530

1531Figure 12. Plant–herbivore model for possums. The
1532numerical response (rhin p.a.) of (a) hinau fruit production as
1533combined negative functions of the previous years
1534production V (via a logistics model) and possum density
1535(Dposs, nos.ha�1)��3��, rhin = 2.2(1 � V/100) � 0.15Dposs,
1536(r2 = 68%, p � 0.001, d.f. = 1/47); and (b) possums
1537(rposs p.a.) as functions of hinau (food) availability (V ) and
1538possum density (Dposs, nos.ha�1)��3��,
1539rposs = {[�0.60 � 0.85(1 � e�0.037V )] � 0.01Dposs}, (r2 = 69%,
1540d.f. = 1/47). A family of numerical response curves exist for
1541both hinau and possums depending on possum density, and
1542are here illustrated with 2 and 10 possums ha�1. (c)
1543Simulated equilibriation between hinau fruit production
1544(solid line) and possums (dashed line) 50 years after
1545liberation predicting extinction of the hinau ‘masting’ cycle.

768abundance (estimated from its isocline numerical response
769to food availability; figure 14a) and per capita food intake
770(estimated from its functional response). When potential
771loss is expressed as a proportion of the food population it



123

1 Numerical response functions in herbivores and predators��1�� P. Bayliss and D. Choquenot 02TB006D.11
2

31547
1548

1549

���������������	


��
��

��
��
��
��
��
��

��


����
����������	


����
��	������	�

��������������������
��	�������������������


��������
���������

��������
���������
������������	��������������

1550

1551 Figure 13. (a) The general form of an isocline numerical
1552 response derived by Rosenzweig & MacArthur (1963), and
1553 (b) the structure of the predator–prey model within which
1554 the response was used. The dashed lines in (b) indicate
1555 relationships that are explicit in Lotka–Volterra models but
1556 subsumed by the isocline numerical response used in
1557 Rosenzweig & MacArthur’s model.

772 is generally termed the consumer total response. Figure
773 14b shows an example of a graphical analysis of the stab-
774 ility properties for a wolf–moose system in North America
775 using predator–prey population parameters estimated by
776 Messier (1994). Our graphical derivation of an equilib-
777 rium point between wolves and moose agree with the con-
778 clusion by Eberhardt & Petersen (1999) that a two-state
779 system need not apply. The isocline numerical response
780 underpins calculation of the proportion of the moose
781 population that would be consumed by wolves at given
782 moose densities. These isocline curves are essentially the
783 same as those shown by Sinclair et al. (1998) for predation
784 in general.

785 4. DISCUSSION

786 (a) Density dependence and population regulation
787 While density-dependent, density-independent and
788 inversely density-dependent factors can all limit popu-
789 lation density, only density-dependent factors impart a
790 tendency towards an equilibrium. Hence, while any pro-
791 cess that affects population density will be a limiting fac-
792 tor, only density-dependent factors are also regulating
793 factors (Sinclair 1989).
794 Density dependence can arise from both intrinsic and
795 extrinsic factors operating on a population (Krebs 1985).
796 Changes in the exponential rate of increase (r) of an intrin-
797 sically regulated population slows at high density through
798 the effect of some type of spacing behaviour on mortality,
799 fecundity or migration as population density increases.
800 Populations regulated in this way can be thought of as
1
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1563Figure 14. The wolf–moose system in North America
1564showing (a) an example of an isocline numerical response
1565linking the density of consumer populations ( y, wolves) to
1566the availability of their food resources (x, moose) (Messier
15671994) with the fitted function y = 58.7(x� 0.03)/0.76 � x
1568and, (b) a graphical stability analysis representing the
1569interaction between moose and wolves based on empirically
1570derived functions in Messier (1994). The lower curve,
1571describing the percentage loss of moose to wolves as a
1572function of prevailing moose density, was calculated from
1573the functional and isocline numerical responses of wolves to
1574moose density (see (a)). The upper curve, describing the
1575gain in moose abundance in the absence of wolves, was
1576derived by fitting a generalized-logistic model to data
1577(rm = 0.22 p.a., K = 2.0 moose km�2 and z = 4.0) presented in
1578Messier (1994). The dashed line indicates the equilibrium
1579moose density predicted by the model.

801‘self-regulating’, with rate of change in their abundance
802determined instantaneously by their prevailing density
803(Caughley & Krebs 1983). By contrast, r for an extrinsi-
804cally regulated population is determined by the availability
805of some environmental resource such as food or nesting
806sites, or by the effect of some limiting environmental agent
807such as predators or disease (Caughley & Krebs 1983).
808Rate of change in the abundance of an extrinsically regu-
809lated population is determined instantaneously or cumu-
810latively by the availability of the critical resource or the
811effect of the critical agent.

812(b) Population regulation: single-species models
813The abundance of large herbivore populations is widely
814held to be limited by extrinsic factors, most commonly
815food supply (Caughley 1970, 1987; Laws et al. 1975;
816Sinclair 1977; Houston 1982; Skogland 1983; Sinclair et
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817 al. 1985; Fryxell 1987; Choquenot 1991, 1998), pre-
818 dation (Bergerud 1980; Gasaway et al. 1983; Messier &
819 Crête 1984; Messier 1991, 1994), or both (Caughley
820 1976, 1977). Factors that limit the size of large herbivore
821 populations may or may not also regulate them,
822 depending on whether they operate in a density-depen-
823 dent fashion. Sinclair (1989) reviewed studies of regu-
824 lation in large terrestrial mammals and concluded that the
825 majority (including all ungulates) were regulated by den-
826 sity-dependent mortality related to food shortage. Similar
827 conclusions were reached by Fowler (1987) in a review
828 based on many of the same studies. Sinclair (1989) also
829 found that while predator removal experiments have
830 shown predation to be an important limiting factor for
831 large herbivore populations, there was no empirical evi-
832 dence that predation could also be a regulating factor for
833 large herbivores. Skogland (1991) and Boutin (1992) con-
834 curred with Sinclair (1989), finding no consistent evi-
835 dence for regulation of ungulate populations by predation.
836 However, Messier (1994) inferred from a comparative
837 study of interaction between moose (Alces alces) and
838 wolves (Canis lupus) across North America, that moose
839 populations could be regulated by wolf predation. If pre-
840 dation does not commonly regulate the abundance of large
841 herbivore populations, processes that could impart density
842 dependence to their dynamics reduce to intrinsic (socially
843 mediated) mechanisms, the debilitating effects of disease
844 or parasites, or food availability.
845 Several recent reviews (e.g. Gaillard et al. 1998) of
846 empirical evidence for density dependence in large herbi-
847 vore demography indicate that the role of density-inde-
848 pendent variation in the abundance of herbivores and their
849 key food resources has not been fully recognized in tests
850 of the food hypothesis. Caughley & Gunn (1993) argued
851 that in areas with highly variable environments, factors
852 such as unpredictable precipitation could introduce sig-
853 nificant degrees of density-independent variation in food
854 availability and herbivore abundance. When combined
855 with lags and overcompensation in vegetation and herbi-
856 vore responses, density-independent variation can obscure
857 any tendency that herbivore density may have towards
858 equilibrium. Similarly, Putman et al. (1996), and Saether
859 (1997) considered that even in temperate grazing systems,
860 stable equilibria between large herbivores and their food
861 resources were unlikely because of the direct effects of
862 environmental variation on herbivore demographic rates
863 and overcompensation in herbivore responses to variation
864 in food availability. If stable K cannot be assumed for large
865 herbivore populations, tests of the food hypothesis which
866 fail to detect density-dependent variation in r (or its
867 correlates) cannot differentiate between perturbation of
868 the system by density-independent limiting factors, and
869 the absence of regulation through density-dependent food
870 shortage. To account for the potential effects density-
871 independent variation in food availability and herbivore
872 abundance have on the tendency of a herbivore population
873 towards equilibrium, interaction between herbivores and
874 their food resources must be considered in a more explicit
875 framework than can be provided by single-species density-
876 dependent models (Choquenot 1998).
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877(c) Population regulation: interactive models
878Explicit models of vegetation–herbivore interaction
879were developed by Noy-Meir (1975) and Caughley
880(1976), who derived them from the predator–prey models
881of Rosenzweig & MacArthur (1963) and May (1973). The
882interactive model described by Caughley (1976) for a
883deterministic environment is described in detail here as
884applied to kangaroos in the Australian rangelands, a stoch-
885astic environment driven by unpredictable rainfall
886(Caughley 1987). The three components of the interactive
887model (growth of ungrazed plants, functional and numeri-
888cal responses) operate collectively as two negative feed-
889back loops governing the influence that vegetation and
890herbivores exert over each others abundance. Density-
891dependent growth of ungrazed vegetation forms a veg-
892etation biomass feedback loop, reducing vegetation
893growth at high biomass and keeping vegetation in check
894regardless of how good seasonal conditions may be for
895plant growth, or how low vegetation offtake by herbivores
896is. The functional and numerical responses of the herbi-
897vore form a vegetation–herbivore feedback loop, increas-
898ing the number of herbivores and how much vegetation
899each consumes at high vegetation biomass, and reducing
900herbivore abundance and their per capita consumption of
901vegetation at low vegetation biomass. Caughley (1976)
902combined these feedback loops in two linked differential
903equations which predict coincident variation in the abun-
904dance of herbivores and the vegetation they feed on.
905Herbivores reach a stable equilibrium point that is
906qualitatively similar to that produced by the generalized
907logistic model described for elk. However, in the inter-
908active model, equilibrium is achieved through the recipro-
909cal influence vegetation and herbivores exert over each
910others abundance, while in the generalized logistic model,
911equilibrium reflects an algebraic limit to herbivore popu-
912lation growth imposed by the existence of K. This does
913not mean that the herbivore population is not regulated
914through essentially density-dependent processes.
915Regardless of the density from where the herbivore
916population starts, its density moves back towards equilib-
917rium through the same series of dampening oscillations.
918While the processes producing the tendency towards equi-
919librium are essentially density dependent (i.e. the vector
920of vegetation and herbivores at any point in time is a direct
921consequence of past grazing activity which is a conse-
922quence of past herbivore density), the tendency itself is of
923more importance to the stability of the grazing system than
924is the attainment of any specific point equilibrium. To
925reflect this, Caughley (1987) coined the useful term ‘cen-
926tripetality’ to describe the tendency that a vector in veg-
927etation and herbivore abundance has towards equilibrium.
928Centripetality de-emphasises the importance of an equi-
929librium in the dynamics of vegetation–herbivore systems,
930focusing instead on the stabilizing properties that the
931potential existence of an equilibrium imparts.

932(i) Stochastic rangelands grazing systems: kangaroos
933Caughley (1987) demonstrated that stochastic rainfall
934variation in the rangelands of Australia produced high fre-
935quency and high amplitude fluctuations in pasture
936biomass with wearying monotony and largely independent
937of kangaroo density. Hence, the kangaroo grazing system
938is constantly buffeted away from its potential equilibrium.
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939 McLeod (1997) argued that, in this environment, the con-
940 cept of equilibrium carrying capacity density has no mean-
941 ing. Nevertheless, the reciprocal influence that kangaroos
942 and pasture exerted over each others dynamics and, ulti-
943 mately abundance, imparted a strong tendency towards
944 equilibrium (i.e. centripetality). Hence, in this model eco-
945 system kangaroos were able to persist indefinitely. Inter-
946 active models may be the general case for vegetation–
947 herbivore systems (and by extension all consumer–
948 resource systems such as predator–prey systems). By con-
949 trast, contracted single-species models are, however, a
950 ‘short-hand’ proxy, often represented by a statistical nega-
951 tive correlation between herbivore rate of increase and
952 density that manifests when density-independent pertur-
953 bation of these systems is low or uncommon. By contrast,
954 McCarthy (1996) used variable rainfall as a surrogate for
955 pasture biomass (see Bayliss 1985a,b) to examine the
956 combined statistical relationships between red kangaroo
957 rate of increase, food availability and past kangaroo den-
958 sity. This approach falls neatly between the single-species
959 and interactive consumer–resource approach, and could
960 be better modelled with an interferential numerical
961 response model.

962 (ii) Habitat effects on food limitation
963 Like most animals, large herbivores balance their forag-
964 ing efficiency with exposure to direct sources of mortality
965 or debilitation in order to maximize the rate at which they
966 can utilize their food resources to increase individual fit-
967 ness (Belovsky 1981, 1984; Stephens & Krebs 1986).
968 Hence, the quality of the various habitats in which large
969 herbivores may elect to spend time will reflect both the
970 availability and quality of food found there, and the degree
971 to which habitat-related constraints effect the rate at
972 which this food can be assimilated to enhance their repro-
973 duction or survival. Habitat-related constraints can influ-
974 ence the rate at which herbivores can find and ingest food
975 relative to its availability (foraging constraints), or the
976 degree to which ingested food can be used to enhance
977 reproduction or survival (demographic constraints). For
978 example, increased predation risk in open areas reduces
979 the foraging efficiency of snowshoe hares (Lepus
980 americanus) by limiting their access to the food available
981 in these areas (Hik 1995). Alternatively, the demographic
982 efficiency of caribou (Rangifer tarandus) is limited by the
983 availability of habitat that affords their calves protection
984 from predators, over and above any effects of food avail-
985 ability (Skogland 1991).
986 Habitat-related constraints on foraging or demographic
987 efficiency inhibit the potential a herbivore population has
988 to respond demographically to variation in its food
989 resources. Hence, models of how habitat-related foraging
990 and demographic constraints influence large herbivore
991 population dynamics need to be formulated within a
992 framework which explicitly represents interaction between
993 the herbivores and their food resources. Caughley’s
994 (1976) interactive model links herbivore foraging
995 efficiency to food availability through a functional
996 response, and herbivore demographic efficiency to food
997 availability through a numerical response. These two
998 responses collectively form a vegetation–herbivore feed-
999 back loop that controls the interdependent effects veg-
1000 etation and herbivores exert over each others abundance.
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1001However, the vegetation–herbivore feedback loop implies
1002that variation in food availability effects herbivore
1003demography (summarized as r) independently of its effect
1004on their rate of food intake. While this simplification is of
1005little consequence where constraints on foraging or demo-
1006graphic efficiency are constant, it compromises the useful-
1007ness of the interactive model where these constraints vary
1008between habitats. Hence, where habitat quality is in part
1009determined by constraints on herbivore foraging or demo-
1010graphic efficiency, the general form of the interactive
1011model cannot be used to consider how habitat quality
1012influences herbivore population dynamics. For example,
1013Choquenot & Dexter (1996) hypothesized that wild pigs
1014in the rangelands thermoregulate when radiant heat loads
1015are high by seeking refuge under the more or less continu-
1016ous cover afforded by riverine woodlands. Behavioural
1017thermoregulation when ambient temperatures are high is
1018obligatory for wild pigs inhabiting other arid and semi-arid
1019environments (Van Vuren 1984; Baber & Coblentz 1986).
1020Choquenot & Dexter (1996) suggested that the thermore-
1021gulatory needs of wild pigs when temperatures were high
1022could link the spatial accessibility of riverine woodlands
1023to either: (i) their foraging efficiency by restricting the area
1024over which they could forage; or (ii) their demographic
1025efficiency by restricting the area within which they could
1026survive and reproduce. In either case, the quality of any
1027particular location to wild pigs will be determined by both
1028habitat composition of the immediate area around the
1029location (i.e. the accessibility of riverine woodlands), and
1030the availability of food in that area.

1031(d) Conclusions
1032The two main reasons why we construct ecological
1033models are to predict and to aid understanding of the sys-
1034tem (Caughley 1981). Both modelling functions are essen-
1035tial to the development and implementation of population
1036management goals for whatever objective (conservation,
1037control or harvesting). Simulation of population manage-
1038ment scenarios to assess their efficacy is becoming increas-
1039ingly popular if not necessary because of the general lack
1040of experimentation. However, the success of this approach
1041depends entirely on the ability of the model to capture
1042real ecological processes, but progress in understanding
1043ecological systems has been less than spectacular. A little
1044scrutiny shows that most wildlife populations are still
1045managed by trial and error rather than by scientific knowl-
1046edge, and that most managers still lack tight criteria for
1047the success or failure of their actions (including doing
1048nothing). Nevertheless, the contributions of consumer–
1049resource models to the research and management of over-
1050abundant kangaroos and possums have been substantial.
1051Curiously though, the modelling approaches adopted in
1052Australia and New Zealand have followed two inde-
1053pendent paradigms (or multi-species versus single-species
1054models; or mechanistic versus density (Sibly & Hone
10552002)). Our re-examination of current kangaroo and pos-
1056sum models, however, indicate that a more useful frame-
1057work for understanding how marsupial populations work
1058may be obtained by combining the two modelling
1059approaches. A marriage between extreme extrinsic
1060(animal–resource) and intrinsic (animal–density) regu-
1061lation models could embody the much broader spectrum
1062of population mechanisms that most likely exist within



123

1 02TB006D.14 P. Bayliss and D. Choquenot Numerical response functions in herbivores and predators��1��
2

3

1063 species. Although more complex population interactions
1064 may be exposed, the trade-off may be increased predictive
1065 power and, hence, utility. This approach increases the
1066 realism and predictive power of existing population mod-
1067 els for kangaroos and possums at manageable levels of
1068 complexity.
1069 We conclude by reinforcing the axiom that in order to
1070 manage populations effectively we need to understand
1071 their dynamics. However, research costs can be substantial
1072 both in terms of time and money. For example, the pos-
1073 sum model was developed a posteriori (no model in mind)
1074 with data collected after 32 years of intensive study of a
1075 population more or less in equilibrium. By contrast, the
1076 kangaroo model was developed a priori (a model in mind)
1077 with experimental data collected after 5 years of intensive
1078 study of a non-equilibrium grazing system. Hence, one
1079 impediment to more widespread use of more useful inter-
1080 active ecological models is the daunting and costly task of
1081 ‘parameterizing’ such models, especially for populations
1082 that exhibit little dynamics within time-scales dictated by
1083 funding and career cycles. An adaptive management strat-
1084 egy (Walters 1997), however, may allow a new breed of
1085 population models to be developed and tested cost-effec-
1086 tively by integrating focused population-scale manage-
1087 ment experiments with the modelling process. One such
1088 model is the interferential numerical response function,
1089 because it may help bridge three major historical dichot-
1090 omies in population ecology (equilibrium versus non-equi-
1091 librium dynamics, extrinsic versus intrinsic regulation and
1092 demographic versus isocline numerical responses).
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Powerpoint presentation 

Population growth rate: Population growth rate: 
determining factors & role in determining factors & role in 

population regulationpopulation regulation
The numerical response: rate 

of increase & food limitation 
in herbivores  & predators

Peter B aylis s  & David Choquenot

 
 

 

 

Seminar OutlineSeminar Outline
•Framework

– Regulation 

– Consumers  & resources   

– Demographic & isocline numerical responses

•Kangaroos
•Possums
•Pigs  

•Implications  
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Types of populationTypes of population regulationregulation
• What regulates  population dynamics  (or rate of increase)?

r =  (b - d) + (i – e)

• Caughley & Krebs  (1983) identified two categories  of regulation 
which are not mutually exclus ive:

2. Intrins ic (=self regulation) – spacing behaviour &/or 
phys iological constraints ; additional to extrins ic factors

r = - g (dens ity)

1. Extrins ic – external, often multiple factors

r = f (resources , predators , weather)

 
 

 

 

Consumers & food resources Consumers & food resources –– types of systemstypes of systems
(after Caughley & Lawton 1981)

Grazing sys tems
(Plant-herbivore)

InteractiveNon-interactive

Reactive Non-reactive Lais sez-faire Interferential

Class ification s ys tem generic  to mos t consumer-resource 
s ys tems : e.g . predator-prey & paras ite-hos t 
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Earlies t interactive consumer-resource model       
Lotka-Volterra predator-prey model
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Food
availability

Consumer
abundance

Consumer demographic
rates (summarised as r)

Food
intake rate

Functional response
Isocline

numerical response

Explic it in Lotka Volterra models
Subsumed in isoc line numerical response

L inks  between consumer & food in isocline 
numerical responses

 
 

 

 

Examples : numerical responses  & foodExamples : numerical responses  & food

Demographic numerical response 
for pigs-pas ture (Choquenot 1994)
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Kangaroo grazing s tudy in the sheep Kangaroo grazing s tudy in the sheep 
rangelands  of NSW (rangelands  of NSW (19801980-- 1984)1984)

Caughley et al. (1987) 

Aim:  to parameterise an a priori
interactive plant - herbivore model for 

kangaroos
 

 

 

 

InteractiveInteractive plant plant -- herbivoreherbivore model: deterministicmodel: deterministic
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• Plant growth function
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BIOENERGETICS MODEL
Deterministic environment     
3 explicit nonlinear energy  

transfer functions
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Unpredictable rainfall is the driving variable Unpredictable rainfall is the driving variable 
in rangeland ecosystemsin rangeland ecosystems

BOOM BUST
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Pasture biomass Kangaroo dens ity

Boom-bust trend in pasture biomass &
kangaroo density during a drought period

Kinchega National Park (1980 – 1984)
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The The a prioria priori interactiveinteractive kangaroo grazing kangaroo grazing 
model Feedback loops & regulationmodel Feedback loops & regulation
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3. Numerical3. Numerical
responseresponse

Instantaneous rate of
kangaroo increase

2. Functional2. Functional
responseresponse

1. Density- dependent
pasture growth

PasturePasture
-- herbivoreherbivore
feedbackfeedback

looploop

PasturePasture
biomassbiomass
feedback feedback 

looploop

RAINFALL

 
 

 

 

100–year stochastic simulation 
The interactive kangaroo grazing model
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•• PostPost--hochoc s imulations  indicate two s table s tates . s imulations  indicate two s table s tates . 

Unstable equilibrium dynamics?

•• Demands  reDemands re--examination of numerical response models .examination of numerical response models .

•• A prioriA priori hypothes is  hypothes is  -- “centripetality”“centripetality” -- the tendency the tendency 
towards  a s ingle s table equilibrium point. towards  a s ingle s table equilibrium point. 

 
 

 

 

High dens ity entering drought

Low dens ity leaving drought

post-drought data 
excluded in 1987 analysis

Time trace: sugges ts  two 
equilibria where r = 0

Hysteresis pattern of red kangaroo numerical response 
over a drought period
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A two state system: a limit cycle                    
in a variable environment?

Time trace of w. grey kangaroo rate of increase vs density
(T- 6 months) over a drought period, 2 points where r =0

Non-drought to start of 
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Drought to break of 
drought

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35

Density t - 6 months (nos.km-2)

R
at

e 
of

 in
cr

ea
se

 (r
 p

.a
.)

>

>

>

 
 

 

 

S table limit cycle: rate of increase & dens ity
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Tidbinbilla Nature Reserve ACT, eas tern Aus tralia 
(1975 – 1991; quarterly counts  = 17 yrs )

Eastern grey kangaroos in seasonal, 
temperate environments – stable limit cycle? 

periodicity      
4 - 6 years?
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KangarooKangaroo dynamics  dynamics  rere--vis itedvis ited

• Rangelands: binary states – droughts & non - droughts.

• Kangaroo dynamics different in each state. 

• An “unstable” limit cycle in arid rangeleands.

• States locally stable but globally unstable.

• But stable limit cycle in temperate zone. 

 
 

 

 

The numerical response & The numerical response & 
multiple limiting factorsmultiple limiting factors

• Introduced possums in New Zealand fores ts

Food + spacing 
behaviour indexed by 
ins tantaneous  dens ity
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Introduced possums in New ZealandIntroduced possums in New Zealand
• New Zealand's number 1 vertebrate pes t

• Kiwis  use logis tic  population growth model;

• where DD recruitment &/or mortality is  as sumed – no evidence
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Hinau fruit 
production (T)

B ody condition (fat & weight)

Winter survival
In s itu yearling recruitment
•Proportion females  with young

•Timing births

Rate of increase

Possum dens ity

Possum Possum –– plant modelplant model

3 negative3 negative
feedback loopsfeedback loops

+/- Hinau fruit (T-1)

Other 
frugivores
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Orongorongo Valley: trends in possum density & 
hinau seedfall (1966-1997; n = 31 yrs)
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r = food        
(extrins ic regulation)

r = dens ity
(intrins ic regulation?)

Possum numerical response models

rposs = - 0.60  +  0.85 (1.0  - e 0.037FOOD)

(n = 50, P < 0.001, R2 = 40%)
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2. Possum numerical response: 
combined regulation model

1. Numerical response of hinau fruit: 
logis tic  growth - possum dens ity
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= 3. Possum - hinau fruit 
interaction
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Possums & food – take home messages

Logistic model:

• OK for possums & bovine Tb

• Inappropriate for complex ecological processes
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Pigs Pigs -- habitathabitat quality quality & food availability& food availability

• Take landscape ecology approach

• Multiple habitat related limiting factors 

• Implications for habitat quality & food resources

 
 

 

 

How does “habitat quality” affect interaction between 
animal populations and their food resources?
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LandscapeLandscape quality influences “foraging efficiency” via quality influences “foraging efficiency” via 
little dlittle d1 1 in the interactive model in the interactive model 

Pasture biomass

Functional response Observed relationshipObserved relationship

Numerical response

dd11

( )Vd
1

1e1cc −−=

( )Vd
2

2e1ca  r −−+−=

Biomass conversion 
principle

Rate of food intake

R
at

e 
of

 in
cr

ea
se

 
 

 

 

15 10 5 -5

Strip Distance (km)

NSW

Main channel of the Paroo RiverMain channel of the Paroo River

Pigs  & habitat quality

 
 



39 

ResultResult

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-5 5 10 15

Kilometers west of the Paroo main channel

O
bs

er
ve

d 
r 

- 
pr

oj
ec

te
d 

r
(+

 9
5%

 C
I)

HypothesisHypothesis
• Does foraging dis tance influence pig rate of increase 

because of reduced foraging effic iency? 

 
 

 

 

Summary of pig case study Summary of pig case study 
• Key importance of biomass  convers ion principle & hence 

Lotka-Volterra framework 

• Landscape approach yields  key ins ights  into pig-resource 
interactions  & population dynamics  

• Specifically, behavioural tradeoffs  & habitat quality (e.g. 
thermoregulation & foraging) 

• Implications  for metapopulation analys is  & linking 
population processes  to landscape scales . 

• Multiple limiting factors  supported. 
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The upshot The upshot 

• Unders tanding population dynamics  & managing wildlife are 
tightly coupled.

• Lotka-Volterra model & demographic  numerical responses : 
bas ic building block for multi-factorial consumer-resource 
interactions .  

• Need to experimentally tes t a priori-multiple-working-hypotheses .  

• Great global effort required. 

• Critica l for conservation, control & harves ting of wildlife. 

 
 

 

 

THE ENDTHE END
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