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Key Knowledge Needs

Uncertainty analysis of data

Linking conceptual models with on-site
management & communications

The uncertainty principle in ecosystem
management

Society invests heavily in research & management of natural
systems

C Yet world is filled with spectacular failures in fisheries, forests,
& biodiversity - WHY?

C Main reason - task is DIFFICULT because of uncertainty
— environmental variability
— observation error
— lack of essential knowledge
— human factor

Worse than uncertainty itself - we tend to underestimate it

Place too much confidence in our predictive models or none at all




Discussion paper: ARRTC key knowledge needs

1. Uncertainty analysis of data
2. Linking conceptual models with on-site management & communications

These two questions are linked under the one heading ‘Managing in the face of uncertainty’,
introduced through the following discussion points.

1. The Classical approach to science - testing single null-hypotheses with experiments.

2. The New approach — testing multiple hypotheses with observations & using models to
evaluate hypotheses.

What is uncertainty and how to model it?
Models for understanding, prediction and decision.

How to confront models with data — the new tools.

o 0 b~ w

Examples — from conceptual to operational.

e Ecological risk assessment of Ranger — downstream water quality
e Ecological risk assessment of mimosa on Oenpelli Floodplain

e Comparison of mining & non-mining ecological risks

7. Communicating with models and the modelling process, including decision-making.

1. The Classical approach to science

Science is a process for learning about nature in which competing ideas about how the world
works are measured against observation (Feynman 1965).

Our descriptions of nature are almost incomplete and our measurements involve uncertainty
and inaccuracy. Hence, we need to use methods to assess the concordance of competing ideas
and observations, and this is the domain of statistics. Platt (1964) describes the classical
Scientific Method as a ‘learning tree of critical experiments involving strong inference’. He
identifies four steps:

1. devisedternative hypotheses,

2. devise experiment(s) to exclude or more of then;

3. get unambiguous results (ie significant, reject null hypothesis); &
4. recycle procedure with sub-hypotheses or sequential hypotheses.

According to Platt (1964) this was the ‘first great intellectual revolution’, the second being the
‘multiple working hypotheses (see below). His views are an extension of Karl Popper's
views that revolutionized science in the 20" Century by arguing that hypotheses cannot be
proved, only disproved. The essence of Popper’s view is to challenge a hypothesis repeatedly
with critical experiments. If it stands up to the assault it is still not validated but acquires a
degree of respect (& in practice is treated as if were true). Coinciding with Poppers views
were the statistical works of Fischer and others who developed the field of hypothesis testing.
In hypothesis testing we focus on a single hypothesis, the null hypothesis, and calculate the
probability that the data would have been observed if the null hypothesis were true. If p is
small enough then we reject it (p<0.05 by convention). However, to complete the calculation,



we must also compute the statistical power associated with the test. The power is the
probability that if the null hypothesis was actually false, and we were given the same data, we
would actually reject it (~ Typel & Il errors). Key elements of the Classical approach are:

1. confrontation between a single hypothesis & data
2. centra ideaof acritical experiment
3. fasification asthe only ‘truth’

Popper basicaly provided the philosophy and Fisher et al the statistical tools. The most rapid
progress in science is those fields in which such experiments are routine (eg glass house
agricultural experiemnts, medicine trials, molecular genetics).

2. A new approach for ecology — testing multiple hypotheses
with observations and using models to evaluate hypotheses

Ecology is dominated by studies where clear experiments and ‘hard data’ are rare. At best the
classical view is narrow and does not fit many ecological situations; at worst it’s dangerous
(eg you can accept an experiment as true even though it has low power). For example, how do
we manage natural systems such as Magela with a high degree of certainty, over a 30 year
time span, given that there is no possibility for experimental manipulation, none for
replication, the system is subject to envirommental variability and has cross-scalar
components (hydro geomorphic scales varying in hours-days-weeks & ecological scales in
seasons-years-decades). The following attributes of ecological systems in general make
experimentation difficult or impossible:

1. long time scales (seasons, years, decades);
2. poor replication (to none); and
3. lack of ‘true’ controls.

The lack of precise knowledge about natural system processes for the Magela and associated
uncertainties is probably the main reason for embedding the Precautionary Principle as a
‘bottom line’ in al levels of water quality management at Ranger.

Nevertheless, with modelling, we could design an ‘experimental tree’ for many hypotheses
and use observations rather than experiments to differentiate between them. The geologist
T.C. Chamberlain apparently first introduced the concept of testing multiple hypotheses that
was published at the end of last century. Ecology is considered more an earth science than a
biological science because the fields are very similar. With both, experiments are difficult to
perform, so by necessity we rely on observation, inference, good thinking and models to
guide our understanding.

It's important to note that models can never be ‘validated'; aternative models are simply
options with ‘varying degrees of belief’. If one model clearly fits the existing data and has
proven ability to explain new data, then we have a ‘ high degree of belief’. There can never be
a ‘correct’ model, only a ‘best’ model that is more consistent with data among several
competitors. To choose the ‘best’ model we need new analytical tools where we confront
models (or concepts/ideas) with data. That is, we determine which model is more consistent
with the data. The validation of amodel is not that it’s ‘true’ but that it has form of utility.



If we alow that either Model M; & M, is true, we can associate probabilities with the two
models given the data. We refer to this as the ‘probability of the model’ or the ‘degree of
belief in the model’. How do we do this? There are three basic steps:

1. characterise the available data (maps, graphs, spatial & temporal patterns, processes);

2. convert pictorial or verbal models into a mathematical description (ie some kind of
mathematical model so that data can be compared to model predictions); and

3. confront the model with the data by comparing predicted and observed results.

When we get to Step 3 there are three broad approaches for this confrontation (& see below
for details).

1. Classical hypothesis testing: we confront each model separately with the data
Ho: Model M4 istrue

Ha Some other model istrue (M5 ..... My).

Using a mathematical description of the models we construct a ‘p value' for the hypothesis
that M is true. We repeat the process with M, and so on for k alternative models. However,
other than collecting more data and more alternative models, there is no guidance about how
we should view the accumulated models.

2. Likelihood approach: we use the data to arbitrate between the models

That is, we ask ‘how likely are the data given the model’. What is the chance, or likelihood,
that the model is the appropriate description of the world given the data (ie turning this
guestion on its head we compare the likelihoods of the two models given the data)?

3. Bayesian approach: we may have other information that allows us to judge, a priori,
which model is more likely to be true

Such information can be summarised in a ‘prior probability that M; is true’. The Reverend
Thomas Bayes invented the theory, which was introduced by Sir Harold Jeffereys (1948) as
‘inverse probability’ 200 years later. It's particularly useful where studies cannot be replicated
(eg assessment of the risk & safety of particular environmental settings in which ‘expert
opinion’ is sought).

3. What is uncertainty and how to model it?

Soulé (1997) identified three key issues for conservation: (1) the effects of various chance
events (on species, populations, communities & ecosystems); (2) the time frame used in
planning; and (3) the degree of security sought. The first involves a scientific solution and, in
contrast, the last two involve society value judgements (ie economic, socia, cultural &
political dimensions). Not all variation in the natural world is due to chance events, much is
due to deterministic (cause-effect) relationships. There is little difference between purely
random events and results of processes that are little understood; both remain unpredictable.
A process in which a variable outcome is random or uncertain is a stochastic process.
Stochasticity is variahility in part due to chance or random events and this is what we mean
by uncertainty. Gillman (1997) states that, in a deterministic world, everything is predictable.
However, no ecosystem is purely deterministic because of unexpected or unpredictable events
that may be entirely random (which he calls stochastic events). But randomness depends also
on the time-scale used. For example, it is difficult to predict the probability of storms from
day to day, but we are more certain from month to month. So an unpredictable (& effectively
random) event at one time-scale may be predictable (& effectively deterministic) at another



time scale. And similarly for different spatial scales. Additionally, add to this the inaccuracies
of our observations or samples of nature.

3.1 Probability and probability models

Hence, data we encounter in ecology may encompass different kinds of randomness. Many
ecologica models simply describe the average value of a parameter, but when we compare
models to data we need methods for determining the probability of individual observations
given a specific model and mean value for the parameter. This means that we need to describe
the randomness in the data. When we build a model we need some way to quantify the
probability distribution of the data. For example, we regularly use the familiar normal or
Gaussian distribution (‘bell’ shaped curve) in statistical Sums of Squares (SS) anaysis of
data. However, most distributions in nature are not normal. There is a range of useful
probability distributions suitable for descriptions of ecological data depending whether or not
such data are discrete or continuous (eg binomial, negative binomial, geometric, Poisson).
Monte Carlo simulation can be used to generate data and test models. In probability theory we
are interested in the occurrence of ‘events that can be thought of as ‘outcomes of
experiments. Hence, the probability of an event A is denoted by:

Pr {A} = probability that event A occurs

We can visualise probability using Venn Diagrams.

where S denotes all possible outcomes. A smaller collection of outcomes, A, has probability
defined in some way asthe ‘area of A divided by the area of S. Hence,

Pr {A} = probability that event A occurs = (area of A)/(area of S)

Continuing with this visualisation, we see that the probability that one of two events A or B
occurring is:

Pr {A or B} = Pr{A} + Pr{B} — Pr{A and B}
That is, the AB interaction term must be accounted for (deducted).



3.1.1 Conditional Probability

If event A occurred what is probability that event B occurred given knowledge about A? This
is a common question in ecology as we use models to make predictions about data, and data
to make inferences about different models. If A occurred then the collection of all possible
outcomes isno longer S but must be A. Hence,

Pr {B occurred given A occurred} = (area common to A & B) / (area A)
= Pr {BJA} = Pr{A,B}/ Pr {A)
If A & B areindependent then they are interchangeable.

3.1.2 Bayes Theorem

The challenge in analysis (& probably all statistical science) is to determine how to use the
information contained in data and Bayes Theorem is a very powerful method (the extreme
LHS & RHS of formula below).

Pr {BJA} = Pr {A,B} / Pr {A) = Pr {A|B} Pr {B} / Pr {A}

It's a very useful theorem when there are a number of possible but mutually exclusive
outcomes By, B;..... By, one of which must occur when A occurs.

3.1.3 Embedding Stochasticity in Ecological Models: Process & observation
uncertainties

How can we model uncertainty? Ecological models often begin with a description of a
process (eg spread rate of a weed, energy or mass transfer, water flow etc). These types of
models are caled ‘process models. Uncertainty enters into these processes because
parameters vary in unpredictable ways in the real world. For example, the spread rate of a
weed may vary seasonally and annually due to environmental variation such as rainfall that
drives seed dispersal rates. This is called ‘process uncertainty’, ‘process error’ or ‘process
noise’ (depending on the field of science). Additionally, to collect data about an ecological
system we observe it and, hence, there will usualy be uncertainty associated with the
observations.

So we have two models, one is the observation model and the other is the process model. We
combine both models into a ‘full model’ of the simple system. For example, the colonisation
of aweed can be modelled as:

Process model: Aweed,,; = Aweed, + sr + PE;

Observation model: Aweed,,; = Aweed, + OE,

Where Aweedy.; is the area extent of the weed at time t+1 which is dependent on the area
extent of the weed at previoustimet, sr, isthe spread rate of the weed at timet, Aweed,,. the
observed extent of the weed at timet, OE, is the observation error and PE; is the process error.

But before we confront models with data we need some knowledge of the probability
distributions (pdfs — probability density functions) that might describe the various kinds of
uncertainty. Comparison of models with bootstrap data sets lets us mimic the Bayesian
approach (ie use Monte Carlo simulation to resample data) and is gaining popularity.



4. Models for understanding, prediction and decision

4.1 Types and uses of models

There are different kinds of models because there are different kinds of investigations.
Models can be classified according to many dichotomies and, as a general rule, scientists and
institutions gravitate towards extreme paradigms.

4.1.1 Deterministic vs stochastic

Deterministic models have no components that are inherently uncertain; there are no
parameters in the model that can be characterised by a probability distribution. For fixed
starting values we always get the same result. In a ‘stochastic model’ some parameters are
uncertain and can be characterised by probability distributions (ie instead of being a constant
mean value it's a variable). With stochastic models we get many different results depending
on the actua values that the random variables take.

4.1.2 Statistical (predictive) vs Scientific (consonant)

Scientific models begin with a description of how the system might work (=consonant with
nature), and proceeds from this to a set of predictions relating dependent and independent
variables. In contrast, a statistical (empirical) model forgoes any attempt to explain why
variables interact the way they do, and describes the relationship with the assumption that it
extends past the measured values (eg polynomia regression models).

4.1.3 Static vs dynamic
Dynamic models link the response variables between one time period and the next.

4.1.4 Quantitative (precision) vs qualitative (fuzzy)

A gquantitative model leads to a detailed numerical prediction about responses. In contrast, a
qualitative model leads to a general description about responses. Qualitative models are used
more broadly to describe regions in which one response is expected and regions in which
different reponses are expected. In contrast, a quantitative model attempts to describe the
precise location of the boundary between regions.

4.1.5 Models for understanding, prediction & decision

In addition to different kinds of models there are different uses of models. We may model a
system to broadly test our understanding of it. However, models usually lead to numerical
predictions in which case we can extract qualitative, intuitive understanding from the broad
patterns of the numerical predictions. However, a model may be used solely for the purposes
of prediction. Such prediction may be qualitative (system will/won’t respond to this effect), or
guantitative (the level of response will be X). A model is most effective if it provides both
understanding (insight) of known patterns and predictions about situations not yet
encountered. Hence, model prediction and understanding are not mutually exclusive.

Finally, we can use a model as part of a decision-making process. Hence, the model may
provide a means of evaluating the potential effects of different decisions (eg management
scenarios or treatments). This is where models have the most to offer in terms of practical
application, but it is also where the greatest danger lies.

4.2 Model complexity

Ecological systems are complex; we can only observe a small proportion of al possible
variables. Levins (1966) sumsit up very well —‘ The multiplicity of models isimposed by the



contradictory demands of a complex, heterogenous nature and a mind that can only cope with
a few variables at a time. Models, while essential for understanding reality, should not be
confused with that reality itself’. Needless to say complexity is both a fascination and a
frustration in ecology. We often ask ‘how complex should a model be’. A model can be
intractable if too complex and, at the other extreme, it can be unrealistic and useless if too
simple. There are other caveats. with simple models we risk leaving out important bits, and if
models are too complex there may be insufficient information in the data to distinguish
parameter values.

For any model and amount of data, prediction error will decrease and then increase as
complexity increases. That is, there is an optimal level of model complexity. There are
guantitative methods to determine the optimum size of amodel. Lishardt and Zucchini (1986)
provide aformal framework for considering different levels of model complexity with respect
to reliability of model predictions. Their approach distinguishes between prediction error due
to approximation (which decreases as model complexity increases) and prediction error due to
estimation (which increases as model complexity increases). Optimal model size has been
found to be much less that intuition suggests. Hence, ‘wrong’ models can often perform better
than ‘right’ models. But this generality will depend also on whether or not the models are
used to make decisions. Simple models tend to underestimate uncertainty, which isintegral to
robust risk assessment associated with decisions. At the end of the day we may need to iterate
between alternative models to understand their strengths and weaknesses, with the realisation
that the most appropriate model will change from application to application.

5. How to confront models with data —the new tools

There are basically three methods to confront models with data briefly outlined above.
1. Sumsof Squares

2. Likelihood and Maximum likelihood

3. Bayesian Goodness of Fit.

5.1 Sums of Squares (sum of squared deviations)

The simplest technique to confront data and has three selling points: (i) it really is simple, we
don’'t need to make assumptions about how uncertainty enters process or observation systems;
(i) it has a long and successful history in science, a proven winner (eg the agricultural
revolution, advances in medicine); and (iii) modern computers allows us to make
sophisticated and elegant SS computations. Additionally, we can conduct sensitivity analyses
by systematically varying one parameter and searching over the others to find the values that
minimise the SSs. But note that all SS models (GLMs) implicitly assume normally distributed
uncertainty.

But how do we choose from the accumulated alternative models? Use minimum SSs?
Interrogate the model with other data sets? The problem is that we don’'t often have other data
sets. We can use the Bootstrap method to resample, which is getting closer to the
Bayesian/Lakatosian approach (ie confrontation of multiple hypotheses with data as the
arbitrator). However, the choice of ‘best’ model implies that in some way we reject others and
select the ‘best’” one. In contrast, the Bayesian approach allows us to assign relative degrees of
‘belief’ to competing models.



5.2 Likelihood and Maximum Likelihood

The SS methods can be used to find the best fit of a model under minimal assumptions of
uncertainty. However, there are many cases in which the ‘form’ of the probability
distributions of the uncertain terms can be justified. For example, if the deviations of the data
from average closely follow alog normal distribution then it makes sense to assume that the
sources of uncertainty are also log normally distributed. In such cases we can go beyond the
SS and use Likelihood methods. Such methods allow us to calculate confidence bounds on
parameters (something the SS doesn’'t alow), and to test hypotheses in the traditional manner.
In addition, Likelihood forms the foundation of Bayesian analysis. We use the probability
distributions to characterise uncertainty in the model to: (i) find parameters of a given model
that provide the best fit to the data (called Maximum Likelihood Estimation); (ii) compare
alternative hypotheses (using the Likelihood Ratio test); and (iii) calculate confidence bounds.

Additionally, the results of statistical tests depend not only on what variation is in the data,
but also on how we believe uncertainty enters it. For example, in standard linear regression
analysis we assume no observational uncertainty (Y), just process uncertainty (X). But when
X is measured imprecisely it's impossible to estimate variances for both observation and
process simultaneously. You can try but often the result is ambiguous. Hence, the
simultaneous estimation of process and observational uncertainty is complex. However,
assuming only one kind of uncertainty can often provide a reasonably good fit to the data,
although neither model is correct. Hilborn and Mangel (1997) suggest that, as a general rule,
if the data are ‘informative’ then the assumption about how uncertainty enters a model does
not matter greatly as each has strengths and weaknesses.

5.3 Robustness —do we let outliers ruin our day?

The problem with Likelihood is that some observations are just too unlikely and will therefore
dominate any estimation. Robust estimation has two meanings (Huber 1981): (i) what
happens when the assumption of normally distributed uncertainty is inappropriate, which is
often the case for ecological data; and (ii) how do we dea with data points that are highly
irregular? (eg via weighted data points?). However, in some risk analyses where rare events
(outliers) lead to irretrievable system failure (the event we try to avoid), we need to be
concerned about so called ‘outliers’. In this sense Likelihood and Bayesian analyses, whilst
attractive for many reasons, may be inappropriate.

5.4 Bayesian Goodness of Fit

Bayesian methods provide a framework for using prior information that may be valuable and
should not be lost in analysis. We analyse ecological datato determine the relative probability
of competing hypotheses and, at the end of the day, we want to say how well the data support
each aternative hypotheses given all the available data, not just the results of the current
study (or experiment). This is realy the goal of science and we do it informally anyway
because we need to report the results of our work in relation to all other work. Bayes
Theorem provides a simple way to use all possible information, but has a long and bitter
debate amongst scientists (eg why bother?). It goes like this - if event A is the data and event
B is the hypothesis Hi, we replace Pr { A|B} with the likelihood L {data|Hi} of the data given
the hypothesis, and Pr { B} with the prior probability Prior { Hi} assigned to the hypothesis.

Pr {Hi|data} = L {data|Hi} Prior {Hi} / Pr {data}



Here Pr {Hi|data} is the probability of the hypothesis given the data (posteriori probability).
The prior probability of Hi summarises what we know before the study (or experiment) and is
the posteriori probability emerging from the previous study. The numerator is the joint
probability of the data and Hi. The denominator is the sum of such joint probabilities,
summed overall possible hypotheses. Hence, Bayes' Theorem can also be written as:

Pr {Hi|data} = L {data|Hi} Prior {Hi}/ Zj L{data|Hj} Prior {Hj}
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Powerpoint presentation

ARRTC key knowledge needs

Discussion Outline

Classical science - testing single null hypotheses with experiments
New Science - testing multiple hypotheses with observations
Using models to evaluate hypotheses

What is uncertainty & how to model it

Models for understanding, prediction &decision

How to confront models with data - the new tools

Examples — conceptual to operational

Communicating & making decisions — use modelling process

Some definitions

Considerable evidence in support of a general principle
explaining certain phenomena

Unproved theory, basis for further investigation

Generalised, metaphorical (symbolic) description used to
analyse or explain something

Models can be tools to evaluate hypotheses, but they are not
hypotheses themselves

Observations or measurements

Chance or random events, upredictable or unexpected
events, lack of knowledge, variability, stochastic process,
process & observation uncertainty (or error)
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Coping with uncertainty — Soulé (1990) &
viable populations for conservation

Identified 3 key issues for conservation of species, populations,
communities & ecosystems

1. Effects of various chance events
2. Time frame used in planning

3. Degree of security sought

The first requires scientific solution, 2 &3 are society value
judgments (socio- economic, cultural & political dimensions)

Classical approach to science

The Scientific Method: “a learning tree of critical experiments involving
strong inference (Platt 1964)" — 4 steps

devise alternative hypotheses

devise experiments to exclude 1 or more of them

1
2
3. getunambiguous results (i.e. significant p-value, reject null hypothesis)
4

recycle process with sub-hypotheses or sequential hypotheses

Extension of Karl Poppers (1939) revolutionary view - hypotheses cannot be
proved, only disproved — “falsification”

Challenge hypothesis repeatedly with critical experiments, if it survives
the assault it is still not validated

Popper provide the philosophy, Fisher et al. the statistical tools
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Classical approach to science

Has 3 key elements

— confrontation between a single hypothesis & data
— central idea of a critical experiment

— falsification as the only “truth”

Most rapid progress in science are fields where such
experiments are routine (e.g. chemistry, genetics)

For ecological studies - this view is too narrow at best &
dangerous at worst (e.g. can accept an experiment as true
even though it has low power)

Classical approach - limited use in ecology

Ecology dominated by studies where clear experiments & “hard data”
often not possible

e.g. How do we manage mine contaminants downstream of RUM, within a
World Heritage National Park, with a high degree certainty over a 30 year
time span, given:

no possibility for experimental manipulation
none for replication (only one Magela Creek)
none for use of “true” controls

system dominated by environmental variability

& cross-scalar effects between biological & physical processes

Main reasons for use of “Precautionary Principle” as a bottom line

12



The new approach to Science

If experiments not possible need to go beyond the
single null-hypothesis approach

Use models to design an “experimental tree” for many
hypotheses

Use observations, rather than experiments, to
differentiate between them

The new approach to ecology is the old
approach to geology

TC Chamberlain introduced concept of “multiple hypotheses”
end last Century

Ecology is more an earth science than a biological science

In both - descriptions of the world are incomplete &
measurements involve inaccuracy & uncertainty

In both - experiments are difficult or impossible to perform

Hence - rely on observation, inference, good thinking & models
to guide our understanding of the natural world

13



Ecologists are modellers at heart

Profile of an ecologist— a creative problem solver, works in the field &
lab, uses statistics & computers, often works with ecological concepts
that are model based if not model driven, asks the following questions:

how do we make the field &laboratory coherent?

how do we link models with data?

how do we conduct experiments &relate them to the world?
how do we integrate modelling & statistics?

how do we confront multiple hypotheses with data &assign different
degrees of belief ?

how do we deal with time series (Where data are linked from one measurement
to the next)?

or put multiple sources of data into one inferential framework

All these questions are relevant to ERISS

Model validation & degrees of belief — the new religion

If one model clearly fits existing data & has proven ability to
explain new data, we have a “high degree of belief”

Models cannot be validated — alternative models are just
options with “varying degrees of belief”

Levins (1966) sums it up well:

all models are both “true” & “false”

multiplicity of models simply reflects a complex, heterogeneous nature
& minds that can only handle a few variables at a time

whilst models are essential for understanding reality, they should not
be confused with reality itself

14



Confronting models with data

Because models are symbolic descriptions of nature, we can
use them to test hypotheses

And help evaluate the confrontation between ideas (concepts)
& data

But no “correct” model, only a “best” model

how do we choose the “best” model?

We confront models with data & ask which is more

The confrontation

We associate probabilities to competing models given the data
The probability of the model is the “degree of belief” in the model
So - what is the process?

Characterise available data — maps, graphs, spatial & temporal patterns

Convert pictorial or verbal models into a mathematical description or model
so that data can be compared to model predictions

Confront the model with the data by comparing predicted & observed results

15



Step 3 - comparing predicted &
observed results

Best prediction Best prediction
Model A

Observed data

Probability density

Prediction
(e.g. frequency fish kills / year)

The confrontation tool box

Three broad approaches

simple, no assumptions how uncertainty enters process or observation systems
proven winner — long history of success

but no guidance about how we should view accumulated alternative models

use data to arbitrate between models — “how likely are the data given the model?”
(or what’s the likelihood's of the 2 models given the data)

can calculate confidence bounds on parameters & use probability distributions to
characterise uncertainty

a priori information allows us to judge which model is more likely to be true
(summarised in the “prior” probability that a model is true)

useful where studies cannot be replicated, or where “expert opinion” is sought

but exists a long & bitter debate

16



What is uncertainty?
Gillman - Introduction to Ecological Modelling (1989)

In a deterministic world everything is predictable (cause =effect)

But no system is deterministic because of unexpected or
unpredictable events, which may be entirely random (stochastic)

Butrandomness depends on temporal & spatial scales used — an
unpredictable event at one scale may be predictable at another

Add to this the inaccuracies of observations or samples of nature

Uncertainty
Stochasticity in ecological models

Two types of uncertainty

Ecological models may begin with a description of a process (e.g. mass
transfer, water flow, spread rate of a weed etc) — “process models”

Uncertainty results from model parameters varying in unpredictable ways

e.g. predicted U-conc increase at 009 is a function of instantaneous loads
at mine site exit points & flow rate at 009, which are all variable within &
between years — called process uncertainty

To collect data about a system we observe it & there is uncertainty
associated with the observations — called observation uncertainty

17



Uncertainty

Stochasticity in ecological models

Before confronting models with data we need to know the probability
distributions that describe various kinds of uncertainty or stochasticity
associated with model parameters

Replace mean parameter values with a
—i.e. they are now random & unpredictable variables, not constants

Many pdfs available “off the shelf” for discrete or continuous data (e.g.
normal, binomial, negative binomial, geometric, lognormal, gamma)

Types of models —the many dichotomies

Deterministic models - no components inherently uncertain

Stochastic models — some parameters uncertain & can be characterised by a pdf

Scientific models begin with a description of how nature may work, & proceeds to a
set of predictions relating dependent & independent variables

Predictive models forgo any attempt to explain why variables interact & assumes
the relationship extends past measured values (e.g. regression, frequency)

Response variables linked between one time period & next

Qualitative model — general description about responses; region where one
response expected & regions in which different responses expected

Quantitative model — detailed description about responses; a description of the
precise location of boundary between regions
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Types & uses of models —the one we want !

Models used to broadly test our understanding of how nature works or to predict

Predictions can be qualitative (system will / won’t respond) or quantitative (the level
of response will be X ....)

Effective models provide both understanding & future predictions

Models can be part of a decision making process - evaluate potential effects of
different decisions

Where models have the most to offer in terms of practical application

But - also where the greatest danger lies

Model types reduce to two

Process-based Models Empirical Models

Built on scientific knowledge of processes Built on empirical (statistical) relationships
Need comprehensive data sets Range of univariate & multivariate approaches
No process understanding

Need good data sets

Not easily transferable

Often over-parameterised

Outputs sensitive to parameter values
Scale issues

Uncertainties handled poorly

Transferable

Potential for hybrid models
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How complex should models be ?
Ecosystems are complex - we only observe a small proportion of all
possible variables

A model can be intractable if too complex; at the other extreme it can
be unrealistic if too simple

For any model & amount of data, prediction error will decrease &
then increase as complexity increases

Methods exist to determine “optimum” model size which distinguishes
between prediction errors due to approximation & estimation

Optimum model size generally much less than intuition suggests

Examples of uncertainty analysis of data
Context - ecosystem “health” in ARR

Multiple problems caused by multiple threats

Key threats include

— climate change effects
— infrastructure

Natural systems characterised by

— variability
— complexity
— uncertainty

Only certainty is that managers need predictive tools (e.g.
ecological risk assessment)
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Example 1: Ecological risk assessment of RUM
(managing WQin Magela Creek DS Ranger)
Introduction to quantitative Ecological Risk Assessments (ERA)
Frequentist statistics (effects & exposure)

Bayesian statistics
EWLS “whole of mine model” (deterministic)

Need for a hybrid model = statistical model +process model

= stochastic process model

Ecological Risk Assessment
Framework for the ARR
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Qualitative risk assessment

Likelihood Consequences exposure
exposure

— T
e | L1

But need to know what are behind the ratings

Why do we need quantitative ERA’s?

® Qualitative ERA’s often fail because

— subjective assessments generally biased — so unreliable
— humans not good at subjectively assessing risk
— uncertainties not treated explicitly

® Need quantitative tools that are

rigorous

transparent

internally consistent

free from ambiguity

allows comparisons (of hypotheses or management options)
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Risk Assessment Tools

® Diversity of methods available

worst case scenario
what if analysis
decision analysis

probability theory (frequency, Monte Carlo simulation, bootstrap)
Bayesian analysis (prior knowledge)

® All address uncertainty associated with variability
® Software now available to assist

® Knowledge uncertainty - more difficult

Ecological Risk Assessment

® Risk assessment is about estimating the probability of an
adverse event

® Two main components of risk
consequences of adverse event

likelihood of exposure to adverse event

® Also need to consider scale
— spatial (creek, river, catchment, region)

— temporal (now, 20y, 50y)
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Probability of an

Pr {A, B} =probability that both
occurred =Pr {A} +Pr B} “adverse” event

. » Similarly for likelihood of an
J oint probability effect =Pr (B}

A

A Expos U Pr {A} =probability that event A

occurred (exposure)

=(area A/area S) where S is all
possible outcomes

Probabilistic risk assessment of a toxicant

(Likelihood)

Lﬂnﬂﬂ]ﬂhﬁ

Log Conc.

o

(Consequences)
Sp sensitivity distribution)

o Cumulative Frequency

Log Conc.
Concentration

5% of species will be affected 20% time
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Where do we begin ?

First build conceptual models

big picture models (e.g. catchment-scale)
system - specific models (e.g. local-scale)

Then build mathematical models which describe the
system of interest

but generally lack knowledge about how ecosystem
processes work & the effects of stressors

System specific - Transport Pathways Conceptual Model
Conceptual model of ecosystem processes & pathways for pollutant/propagule
transport in the environment of ARR

Atmospheric pollution —radon, dust —
rates, distribution, fate, effect

Biological pollution - bio-
concentration, invasive species —
rates, distribution, fate, effect

Deliberately introduced
materials for mining, milling
and rehabilitation — chemical,
biological & physical

Surface water pollution — uranium,
manganese, sulphate - rates,
distribution, fate, effect

Groundwater pollution — uranium,
manganese, sulfate — rates,
Infrastructure development — land distribution, fate, effect
clearing, fragmentation, flow o
disruption
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Can be spatially explicit
model

System-specific model at mine site
scale: surface water pollution exit
pathways at RUM

U - concentration data at Magela 009 weekly
readings over wet season

Background +anthropogenic spikes

Ecotox TV =5.5

ERA Action Level
=14

ERA Focus Level
! =0.2
1984 1988 1992 1996 2000

Year Background = 0.1
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Uug/L

U concentration (ug/L) Magela 009 (1980- 2003)

\ |

wdlos

1: L_LLLL_L_,,_L*I |

1080 1984 1988 192 199
Year

2000

Frequency

200 1

180 1

140 1

120

100 1

80 1

60

40

20 1

B Frequency
—— Cumulative %

Log;9 U Conc intervals (ug/L)

9 100.0%

1 80.0%

7 60.0%

1 40.0%

1 20.0%

0%

2.0 ug/L

Exposure & effects at 009 (1980-2003)

Cumulative % Frequency of Exposure & Effects vs U con (ug/L)

@
o
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o
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o
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o
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=]
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ks
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=
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O

Exposure

If Uconc =TV
1% species atrisk

99% protected

with 50% certainty
(NWQG standard)

1.0

10.0 100.0 1000.0

Logso U conc (ug/L) TV=55ug/L

Binary system: no past connection because of almost zero
probabilty of interaction (1 in 1.6 million)
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Exposure & effects at 009 (1980-2003)

% Probability exposure (exceedence) & % species affected vs U con (ug/L)

Uranium Exposure & Effects Frequency Curves
TV =5.5 ug/L (1% species affected)

% Probability of Exposure
% Species affected

oy 0
10.0 100.0 1000.0
Logio Uconc

Matching exposure & effects data

U conc Magela 009: 4-point moving average

96h
duration

weekly
samples (min 1 day/wk)
during release

Weekly samples are
“worst case scenario” as
4-day exposure means
would have less variance
flattening U-spikes

Years (1986 - 2003)
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Family of “on-site” exposure curves for RUM (1986 — 2003)

Cumulative % frequency vs log ;, U conc (ug/L)

Cumulative % F Exposure

/

Effects

‘ TV =5.5ug/L
- 80

- 60
How do they

relate to
ecological risk
off-site at 009?

- 40

% Protection level

- 20

1.00

Logio Uconc ug/L

T T T 0
10.00 100.00 1000.00 10000.00

Chance of an adverse event at 009

Problem — estimate the ecological risk at the U-TV boundary (5.5 ug/L at 009),
given log normal distribution of uranium exposure & effects data

® Pr (exposure)

® Pr (effects, 1% species affected)

® Pr (ecological risk)

= 0.0000304521 (1 in 32,828)
= 0.01 (1 in 100)
= 0.0000003045 (1 in 3.3 million)

® Note Pr (1% effects) is only 50% certain (NWQG), however

® Pr (ecological ris

k)

=Pr (exposure) x Pr (effects)
=(0.0000304521) x [(0.01 x 0.50)/(1.00 x 0.50)]
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Bayesian theory — hypothesis
confronted with data

Pr {Hi|data} = L {data|Hi} Prior {Hi}
Pr {data}

Hi is >1% species not protected (U=> TV 5.5 ug/L)

Pr {Hi|data} is the probability of the hypothesis given the exposure
data (posteriori probability)

L {data|Hi} is the likelihood of the data given the hypothesis

Prior {Hi} - probability of Hi summarises what is previously known, the
posteriori probability emerging from previous ecotox effects study

Ecological Risk at RUM & Bayesian Statistics

Posteriori hypothesis — backcasting with observational data (exposure)

H,: TV reached (P =0.0000304521)
H,,: false, TV not reached (P =0.9999695479)

Prior or additional knowledge — Ecotox lab work (SSDs - effects)

H,,: 1% species affected at TV (P =0.50x 0.01 =0.005)
H,,: false, 1% not affected at TV (P =0.50x 0.99 =0.495)

Pr {H1poth data} =P{H, } P{H,,}/ [P{H,,} P{Hy} +P {H;;} P {Hy,}]
= 0.0000003045 (1 in 3.3 million)
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EWLS “Deterministic” Model - RUM

Attempts to develop a “whole of mine” predictive process model to
better manage WQ on site (Klessa)

Predicts change in WQ (EC us/cm & U ug/L) at compliance point 009
Uses point source data — contributions to solute load at 009 from 3
main surface water exit pathways

— Corridor Ck /Georgetown Billabong
— RP1/ Coonjimba Billabong

— Direct release of ponded water from Djalkmara Billabong

Does not account for diffuse sources (shallow ground water
fluxes, seepage to Gulungal from Tailings dam & land application),
or differential lag times in flow rates

EWLS Model - RUM

MODEL predicts incremental increase in solutes over background (as
measured upstream of mine at GS821067)

PCl=(L1+L2+L3)/F

Where PCI is predicted concentration increase; L1, L2 & L3 instantaneous
loads at 3 exit points; F is instantaneous flow rate (m3s-1) at 009

Assumes Corridor Ck & RP1 catchments similar in size, no Djalkmara
release & 100 x dilution of waters into Magela. Model simplifies to

PCl =0.01 (C1 +C2)
Where C1 & C2 are measured concs at those 2 exits

Hence, site operational model =

Predicted concentration at 009 = PCI + Baseline mean

Used in conjunction with risk assessment decision making process (“traffic
lights” approach w.r.t. focus & action levels)
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EWLS Model - RUM

A start but long way to go

Model “validation” - compared D - U differences for 3 wet seasons but
was a poor fit (2 of 3 cfs were conservatively consistent with model)

The overall confrontation between model & data is weak — does
not use advanced analytical tools

Biggest problem - process & observation uncertainties not explicitly
defined — basically a simple deterministic model with boundary
conditions approximated; uses mean values & smoothing to hide
variability

Need a hybrid model to combine key processes with probability

And a comprehensive quantitative risk assessment & decision
analysis (if model to be used for on site WQ management)

Where next for Ecological Risk
Assessment of RUM ?

Make the U- Effects model more robust - the ERA shows that it’s the
weaker partner although a huge work in itself

Model other major chemicals & explore interactions between them

Develop a hybrid “process & statistical” model:

consistent with historical data

has ability to predict future events at 009 in relation to on-site WQ
management

has an acceptable level of uncertainty

Incorporate decision analysis into the risk assessment
framework
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Making the effects model more robust

Strength: deliberate range of species across trophic levels used

Weakness: small sample (5/1500 = 0.33%) & Log - Logistic
assumption leads to “long-tail syndrome”

Long extrapolation to critical part of risk model — closes the binary gap; in
ecotox generally LL model weak assumption; when tested only half true

NOEC U-toxicity range (ug/L) Species Sensitivity Distribution (SSD) curve (log-
logistic fit of NOECs to U concentration)

10
0.8

06
long tail
0.4 g

algae & hydra 2 fish sp
021 ( \
T T

1 waterfliea
N =5 outof
possibly 1500
species (0.33%)
J J J 00

10-15 15-20 20-25 25-30 01 10 10.0 100.0 10000 10000

Frequency

Cumulative Probability

T T 1

Logio NOEC range (0.5 increments) Logso (U conc for NOECS)

Strengthening existing ecotox SSD risk model
using “desk-top” life history analysis
NOECvs Body Mass Magela Creek - Total aquatic species vs body

mass interval (kg)

250

Animals

Logio (NOEC)

y =0.5535x + 3.8365
R’ =99.29, P<0.0L

Frequency

40

Logio Mass (kg) Log10 (Body mass Kg)

Magela Creek - Predicted NOEC species

sensitivity distribution (SSD) to U-toxicity Aﬂ
Determine best probability
distribution function to
describe variation in NOECS
for Magela aquatic ecosystem
to enhance quantitative ERA

Frequency

Predicted NOEC U - toxicity
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Using models to help make risk
management decisions

Problem formulation Making l'iSk
management
Issue/Hazard Assessment decisions

Risk assessment & ranking
o Effects/hazard assessment

Monitoring ¢ Likelihood assessment

Decision processes
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Decision needs: Type |l & Il errors

Environmental managers seek to Predicted response
balance chance of making 2 kinds
of mistakes

Impact No impact

predict no impact (safe)
when there is one

I

No impact

True resp

predict an impact
when there is none

\

Decision needs — safety in numbers

® Trade off between Type I &Il errors

® Need Power =1-f (Type Il error rate) Predicted response
® Hence need lots data or replication

Impact No impact

No impact

True response
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Incorporate Decision tree” models (e.g. algal blooms)

Frequency

YES = TP>50 ug/L 50 TP conc

NO
NO

Frequency

YES = Turb <30 NTU Turbidity

VRN

Frequency

l YES = Flow event

I

Example 2: Conceptual & operational models for
managing invasive species impacts at landscape scales
(mimosa on Oenpelli Floodplain)

Conceptual bioeconomic framework
Key predictive sub-models for on-site operations

Ecological risk assessment

Further improvements in ERA process

Comparing mining &non-mining ecological risks
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Conceptual bioeconomic model for
invasive species management

Pest control

- “ _ Outputs
Pest density (additional income or
(costs of control) ‘ improved public asset)
Damage
reduction

Benefit/cost analysis

Monetary benefit/cost analysis
Benefit maximisation
Cost minimisation

Three key predictive
sub - models

1. Damage — pest density relationship
2. Cost- of- control curve

3. Population growth response

37



1. Mimosa: Damage — density relationship

Impact of mimosa on floodplain plant
biodiversity (CSIRO, Oenpelli 1993)

Loss = 0.90 %CM - 2.81
R® = 90%, n=4, P<0.05

Model predicts 87% loss
plant species on floodplain
with 100% cover mimosa

% Species loss

Pr (effects) =0.87

20 40 60 80

% Cover mimosa in experimental plots (CM)

Experimental data (Cooke et al. 1990)

Mimosa: cost - of - control

Cost-of-control curve Mimosa
Oenpelli (1991 - 1997)

y = 30150)(-0'7109
R? = 93%, P<0.001

$ Cost /ha

2000 4000 6000

Mimosa control area (ha)

Operational costs only
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3. Mimosa: rate of spread or
colonisation (exposure)

Area (ha) spread Mimosa: Oenpelli & Mary
River Floodplains
7000 1

) 4 <
g 6000 &
8 5000 1 —— AreaO (ha) g
.g 4000 A ——AreaMR (ha) é
= 3000 1 =
B omad o
g 000 g
:( 1000 A

0 T — T T T

1980 1982 1984 1986 1988 1990

Year

Mimosa control Oenpelli Floodplain
Combined sub-models

<«—— control 1992

Area mimosa (ha)

COST-OF-CONTROL
Costs/ha Total Costs

$1.6 mill matches operating
costs in annual reports. But
Initial cost ($/ha) $51 $404,162 actual costs including capital &

Mean annual maint cost ($/halyr) $236 $242,106 _ — _ AT
Total cost (8ha) for $1,231 $1614,602 OHs 1992 — 1997 = 36 - 7 million
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ERA of mimosa plant biodiversity impacts Oenpelli Floodplain

Frequentist approach — predicted exposure & effects over time (1984 — 2003)

(0.87)
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Mimosa risk management

Further model improvements in pipeline to reduce
uncertainty in decision making

include environmental stochasticity (rainfall effects on spread rates)

make model spatially explicit (use life-history & habitat knowledge
in GIS)

enhance risk assessment model - include benefits & costs of
monitoring (e.g aerial & ground search, remote sensing)
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Comparing mining & non-mining ecological risks

Risk Probability =Pr {effects} x Pr {exposure}

Comparing 22 yrs RUMrisk with 1 yr mimosa risk (1992)
Factor of ~756,00 difference
which does not reflect differential research

&management investment

Communicating Risk
Amongst scientists

Use modelling process to bring scientists together into an
integrated & coherent expert system

Cuts across disciplines, imparts common ownership, helps
resolve differences & conflicts

With environmental & NR managers

Involve in modelling process from outset

With ownership more likely to use models

With stakeholders & general public

Communicate risk through excitement of new approach to science

Highlight need to accept & live with degrees of uncertainty
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Workshop Outcomes

Need to ask — has ARRTC covered all bases? What’s not on their list?

A summary matrix would be useful, one that identifies for each KKN

what the issue is —is it really an issue?

what are the key knowledge gaps?

who is best able to fill the gap (Eriss, EWLS, other)?
if within Eriss —who, how & when?

how & when to collaborate with EWLS? Start now?

How do existing projects fit the new needs? If not when do they phase
out? Or can they be made to fit?

ARRTC Key Knowledge Needs

Contaminant movement within biophysical pathways (CH)
Contaminant movements through groundwater (KE & PM)
Linking ecotox knowledge &biophysical pathways (CH)
Human health risks associated with biophysical pathways (PM)
Radiological effects on people (PM)

Linking conceptual models with on-site management (PB)
Completion criteria & shared reclamation objectives (KE)
Ecosystem establishment techniques (KE)

Sustainability of rehabilitation (PB & CH)

Final landform - radon emanation & bioaccumulation of radionuclides (PM)

W ® N Uk NN

—
[N o
. by

Adequate baseline data to underpin indicators of success (CH)

—
N

Demonstrated ability to reconstruct an ecosystem (KE)
Uncertainty analysis of data (PB &KE)

—
A

14 & 16 Communications — later; 15?
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ARRTC Key Knowldge Needs reduce to 2 clusters - pathway
analysis & the rehabilitation process - both are linked &
essential for managing risks to humans & ecosystems

Outcome areas

Pathway

Biophysical
Groundwater
Biophysical
Biophysical - human
Radiological

Pathways model & ERA
Radiological

Pathways model & ERA

Rehabilitation process
Rehabilitation
Rehabilitation
Rehabilitation
Rehabilitation
Rehabilitation

Before closure
Operational mine

Risk
Ecosystem Human
X X

X

X

Comparison of research foci before after future mine closure

After closure
Rehabilitation

Management focus

Primary focus transport pathway

Secondary focus transport pathway

Primary focus response uptake

Secondary focus response uptake

Primary contaminants
Landscape-wide impact:
Time frame

Degree of security

Modelling requirements

Transport pathways (GW, SW, air)
Ecological risk assessment

Landform evolution

Vegetation succession/dynamics

Catchment model

Off-site

Surface water
& releaseinto Magela
(009)

Direct gamma
dust

Aquatic organisms

Bush tucker
Drinking water
Bioaccumulation

UMg SO4 Radon
Yes

23-30yrs
Very High

s considered
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On & off-site

Groundwater & surface water

Erosion & surface water transport (sediments)
Direct gamma

Dust

Bush tucker (fruits/yams/vert wildlife)
Drinking water
Bioaccumulation

Sediments U SO4 NH4 Mn

Yes
100 + yrs?
High




One approach to ARRTC KKNs — use transport pathways
model within an ecological risk assessment framework
for the ARR

Allows coherent transition between research centred on
an operational mine & the rehabilitation phase

Original Transport Pathways Model + rehab additions
Conceptual model of ecosystem processes & pathways for pollutant/propagule

transport in the environment of ARR

Atmospheric pollution — radon, dust —
rates, distribution, fate, effect
. Biological pollution — bio-
Fire concentration, invasive species —
rates, distribution, fate, effect
People \\ / Invasive species

Deliberately introduced N P
materials for mining, milling Surface water pollution — uranium,
and rehabilitation — chemical, manganese, sulphate —rates,
biological & physical distribution, fate, effect

Erosion ’ s Wildlife

Groundwater pollution — uranium,
manganese, sulfate — rates,
Infrastructure development — land distribution, fate, effect
clearing, fragmentation, flow
disruption
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Use a spatially explicit
model for all pathways

For model simulation during pre- &
post mine closure, risk analysis,
decision analyis, monitoring &
communications

Uncertainty & ecosystem rehabilitation in ARR

Multiple problems caused by multiple threats

Key threats include

— toxic contaminants from past mining
erosion/sediments
invasive species (e.g. pigs & weeds)
unmanaged fire
climate change effects
infrastructure & people

Natural & rehabilitated systems characterised by
— variability
— complexity
— uncertainty

Only certainty - managers need predictive tools (e.g.
ecological risk assessment, ecological models)
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Ecological Risk Assessment

® Risk assessment is about estimating the probability of an
adverse event

® Two main components of risk
consequences of adverse event

likelihood of exposure to adverse event

® Also need to consider scale
— spatial (creek, river, catchment, region)

— temporal (now, 20y, 50y)

Risk Assessment Tools

Range of methods available

worst case scenario

what if analysis

decision analysis

probability theory (frequency, Monte Carlo simulation, bootstrap)
Bayesian analysis (prior knowledge)

GLMs (least squares, likelihood)

All address uncertainty associated with variability

Knowledge uncertainty — more difficult — need new
research to fill key gaps
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Use ecological models for understanding,
prediction & decision

Models generally used to test our understanding of how a system works or to
predict

Most useful models provide both (e.g. stochastic process models)

Models can be part of the decision making process — used to evaluate potential
effects of different decisions within a risk assessment framework

Where models have the most to offer in terms of practical application, but also
where the greatest danger lies

Ecological Risk Assessment of Ranger

Make U- Effects model more robust using Life History analysis

Model exposure of other major chemicals & explore interactions
between them (Mg, SO,, Mn, Ca etc)

Develop stochastic process model for Ecological Risk Assessment
— consistent with historical data
— ability to predict future events at 009 in relation to on-site WQ management

— has an acceptable level of uncertainty
Incorporate decision analysis into the risk assessment framework
Model other pathways (ground water, air)

Extend risk assessment framework to encompass rehabilitation
phase
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Invasive species management - 3 key
predictive sub-models

1. Damage — pest density relationship

2. Cost- of- control curve
3. Population growth response

For:
® Mimosa, salvinia, paragrass, major terrestrial weeds

® Pigs

Risk management of invasive
species in the ARR

Further model improvements to reduce uncertainty in
decision making

incorporate effects of environmental variability on population
dynamics of pest species

make model spatially explicit (via life-history &habitat knowledge
in GIS environment)

enhance risk assessment model — include benefits &costs of
monitoring (e.g aerial & ground search, remote sensing)
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Do our existing ERA projects fit the new
Key Knowledge Needs?

Fits ARRTC
I 2002-03 Projects KKNs?
LANDSCAPE
Weed risk assessment KNP Yes Rehab Invasive sp

Feral animal management KNP Yes Rahab Invasive sp

Boggy Plain - multiple impacts Yes Rehab Invas sp, fire, climate change
Control site mining impacts
World Heritage values - Waterbirds ARR Yes Rehab WH values, climate change
Mangrove response to coastal Yes Rehab Climate change
environmental change
Ecological risk assessment Ranger Yes Rehab/TP model |Mine-site management
Ecological risk assessment Jabiluka? Yes Rehab/TP model |Mine-site management
Ecological modelling (= ERA & TP model) Yes Rehab/TP model |Mine-site management
Catchment management Arnhem Land No
ECOTOX
Current ecotox projects (Mg, SO4, NH4, Mn) Rehab/TP model [Mine-site management, WQ
Strengthen SSD ecotox effects model Rehab/TP model [Mine-site management, WQ
using life history analysis
REHABILITATION
Integrate all YESs into REHAB projects Mine-site management, WQ
See following

REHABILITATION

= Landscape gardening on a
grand scale ?
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Rehabilitated mine site area will be an
open system

Rehab sites are open systems subject to disturbance or change (e.g. fire,
invasive species)

Ecosystem will hence exhibit non-equilibrium dynamics (including
multiple equilibria, dynamic equilibrium, unstable equilibrium)

NE Ecosystem dynamics characterised by diversity, complexity &
uncertainty

May exist many local “domains” of attraction with boundaries separated
by breakpoints or thresholds (hysteresis effect)

Transition to a local phase may be irreversible (wrt to rehab, would entail
costly intervention to reverse change)

System outcomes generally unpredictable because of sensitivity to initial
conditions

Role for adaptive experimental
management in rehabilitation?

YES - rehabilitation sites are open systems with uncertain outcomes
Adaptive Management is:

about managing in the face of uncertainty (process, observational &
chance events)

a structured process of “learning by doing” via experimental management;
one step beyond better ecological monitoring & response to unexpected
impacts

Rehabilitation programs have great scope for AM of landscapes
(vegetation, landforms) & populations

An opportunity to improve management by resolving key uncertainties
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Adaptive Management

Begins by integrating existing knowledge into models that attempt to
make predictions about impacts of alternative actions

The crucial modelling step has 3 functions

problem clarification & enhanced communication amongst scientists, managers & other
stakeholders

screening of options to eliminate those unlikely to do much good

identification of key knowledge gaps that make model predictions suspect

Models are constantly improved with structured manipulation of
management treatments, in combination with & feedback loops

But not without problems — modelling plagued by cross-scalar effects
(rapid hydrologic change vs long-term ecological response), lack of data
on key processes & so on

Monitoring approaches

Traditional quantitative ecological assessment (e.g. structure
& composition vegetation)

Vital Ecological Attributes (VEA)

Ecosystem Function Analysis (EFA)

Remote sensing (structure, pattern & compaosition)
Faunal recolonisation (abundance & composition)

Other indices of ecosystem recovery

51



Vital Ecological Attributes (VEA)

Characteristics, or attributes, that are correlated with, and can serve as,
indicators of ecosystem structure and function

Basic approach to plant succession that defines minimum set of plant
attributes needed to predict plant community dynamics subject to recurrent
disturbance such as fire & floods. e.g.

perenial & annual plant species richness

abundance invasive species

spectrum of plant life forms

total cover of the vegetation

viable seed bank in the soil

recruitment, growth & survival of key indicator plants
soil surface conditions

organic matter content in the soil

Liked by Max, Chris, 1 ARRTC member & myself, but not by mining
companies (e.g ERA-EWLS) & CSIRO SE

Ecosystem Function Analysis (EFA)

Developed by CSIRO SE for rangelands & other disturbed landscapes such as
mine sites. Provides assessment on effects of stress/disturbance on
landscapes. Has 3 modules:

— landscape function
— vegetation composition and dynamics

— habitat complexity
Apparently assumes an equilibrium end-point

Liked by mining companies (e.g ERA-EWLS) & CSIRO SE, but not by
Max, Chris, 1 ARRTC member & myself
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Rehabilitation

Key issues

Knowledge gaps

Possible project

Who, where &when?

Rehabilitation

Key issues

Knowledge gaps

Possible project

Who, where &when?
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Rehabilitation

Key issues
Depends on mine site closure criteria & rehab goals (wrt analogue or reference site?)

What success criteria & indicators? & how to monitor?

What approach or model? — EFA, VEA or other (e.g. use remote sensing); need not be
mutually exclusive — tells us when to intervene (&what benefits for what costs)

Knowledge gaps

Disturbance ecology - invasive species (Weeds & pigs), fire, people & their
interactions

Soil-vegetation-fire dynamics of surrounding landscape &rehabilitated area

How to manage contaminated sites & erosion — identify all potential trans port
pathways

Lessons from Nabarlek?

Rehabilitation

Possible projects

Initial modelling exercise using available knowledge comparing VEA, EF A & other
approaches, &a range of success indicators (including multivariate indicators)

Revamp existing weed & pig control projects to deal with specific rehab issues (eg
ground disturbance &weed invasion risk, interactions with fire; pig impacts etc)

Who, where &when?

e Across Eriss, EWLS, NLC, PAN (?), TOs; Nabarlek & Ranger; 2003 — 2004 Work Plan
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Rehabilitation

Key issues

Knowledge gaps

Possible project

Who, where &when?

Rehabilitation

Key issues

Knowledge gaps

Possible project

Who, where &when?
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Rehabilitation

Key issues

Knowledge gaps

Possible project

Who, where &when?

Rehabilitation

Key issues

¢ Now - mine operational. Risks of “off-site” impacts associated with all transport pathways
(surface & ground water, air) & contaminants/propagules

e Future — mine closure/rehab. Risks of “on & off-site” impacts associated with all transport
pathways (surface & ground water, air, biophysical) & contaminants/propagules

Knowledge gaps
* As discussed in seminars &this workshop

Possible project

e Develop stochastic process sub-models of Conceptual Trans port Model

e Undertake ecological risk assessment

Who, where &when?

* Now - across Eriss, EWLS; Ranger; 2002-03 & 2003-04

e Future — across Eriss, EWLS, PAN (?), TOs, other stakeholders; Ranger; 2003-04
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